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Electrification of transportation and rising demand for grid energy storage 
continue to build momentum around batteries across the globe. However, 
the supply chain of Li-ion batteries is exposed to the increasing challenges 
of resourcing essential and scarce materials. Therefore, incentives to 
develop more sustainable battery chemistries are growing. Here we show 
an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once 
the electrolyte is optimized to Li2ZnCl4⋅9H2O, the assembled Zn–air battery 
can sustain stable cycling over the course of 800 hours at a current density 
of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency 
for Zn stripping/plating. Even at −60 °C, >80% of room-temperature 
power density can be retained. Advanced characterization and theoretical 
calculations reveal a high-entropy solvation structure that is responsible 
for the excellent performance. The strong acidity allows ZnCl2 to accept 
donated Cl− ions to form ZnCl4

2− anions, while water molecules remain 
within the free solvent network at low salt concentration or coordinate with 
Li ions. Our work suggests an effective strategy for the rational design of 
electrolytes that could enable next-generation Zn batteries.

Environmental and resource sustainability have become increasingly 
important for the development of next-generation battery technolo-
gies needed to meet the ever-expanding market for renewable energy 
storage in smart grids and electrification of vehicles1,2. Li-ion battery 
(LIB) technologies dominate in this space currently due to their high 
energy density and long cycle life. However, as demand for energy stor-
age capacity continues to accelerate, price and resource volatility due to 

limitations in the supply of lithium and transition metals are garnering 
more attention. In addition, LIBs require an energy-intensive manufac-
turing process, often utilizing toxic and environmentally unfriendly 
chemicals. The potential safety issues during LIB operation and their 
tolerance to mechanical abuse are also not completely resolved.

Aqueous zinc batteries have emerged as one of the promising 
complementary chemistries because of the potential for zinc (Zn) 
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In the Li2ZnCl4·RH2O electrolyte proposed as a HEE here, the 
hydrated Li+ cation–ZnCl4

2− anion pair size19 is larger than Bjerrum 
critical radius in aqueous solution20, indicating dissociation of Li+ 
from the ZnCl4

2− complex (middle of Fig. 1a). Meanwhile, the sup-
pressed ion pairing means that Li+ remains largely hydrated even in 
the highly concentrated regime, serving as a water sponge to break 
down the hydrogen-bond network of water21. Figure 1b shows the 
extraordinary conductivity retention of Li2ZnCl4· 9H2O electrolyte in 
a temperature range from +80 to −80 °C, compared with single-salt 
aqueous electrolytes of LiCl·3H2O or ZnCl2·3H2O with the same salt/
water ratio = 1/3 and their diluted versions with molar concentra-
tions of 2 mol kg–1. The ionic conductivity of Li2ZnCl4·9H2O exactly 
follows the VTF equation across the whole temperature range, drop-
ping from 200 mS cm−1 at +80 °C to 1.36 and 0.66 mS cm−1 at the low 
temperatures of −70 and −80 °C, respectively, which is superior to 
competing electrolytes developed for low-temperature operations16,17. 
Supplementary Fig. 1 highlights the liquid state of Li2ZnCl4·6H2O 
and Li2ZnCl4·9H2O at −70 °C. Its Vogel temperature, T0, equal to the 
glass transition in ideal glasses22, is 12 °C lower than the measured Tg 
(−109 °C; Supplementary Table 1). This suggests that Li2ZnCl4·9H2O is 
a fragile glass former without any crystalline phase transition of water 
or salt in this temperature range, which is rare in aqueous systems23. As 
a result, Li2ZnCl4·9H2O is the only electrolyte without any thermal hys-
teresis in the cooling–heating cycle between +80 and −80 °C (red line 
in insert of Fig. 1b), which is critical for battery performance in harsh 
environments. Further studies of various concentrated Li2ZnCl4·RH2O 
electrolyte systems showed similar ionic conductivity with R from 6 
to 18 (Supplementary Fig. 2a). The Zn-ion transference number tZn at 
room temperature was found to range from 0.41 to 0.25 for R = 9 and 
R = 6 in Li2ZnCl4·RH2O at 20 °C (Supplementary Fig. 2b,c). Interestingly, 
tZn decreases slowly with temperature for all concentrations, while the 
Li-ion transference number tLi for R = 9 is relatively stable at ~0.3 over 
the whole temperature range.

Li2ZnCl4·RH2O electrolytes show unexpected properties due to 
their unique solvation structure. We evaluated the overall ionic con-
ductivities of LixZn3 − xCl6 − x·9H2O with different molar ratios of LiCl/
ZnCl2 and at different temperatures (Fig. 1c). Li2ZnCl4·9H2O 
(nLiCl/nZnCl2 = 2) showed the highest ionic conductivity in the tempera-
ture range from +20 °C to −70 °C (Fig. 1c), which also agreed with the 
Tg (red dashed line in Fig. 1c) measured using differential scanning 
calorimetry (DSC; Supplementary Table 1). The extra Cl− donated from 
the LiCl supporting salt to ZnCl2 satisfies the preferred tetrahedral 
coordination structure of ZnCl4

2− anions, reducing the prevalence of 
edge-shared Cl− between Zn2+. This, in combination with disruption by 
partially hydrated Li−Cl contacts discussed later, limits the formation 
of contiguous [ZnCl4−m

2−m]n (n > 3) extended networks, resulting in a 
high degree (~0.5) of ion uncorrelated motion (ionicity) at room tem-
perature (Supplementary Fig. 2d). The formation of these extended 
networks is a noted issue in concentrated single-salt ZnCl2·RH2O that 
limits conductivity24. Changes to the solvation structure in the 
Li2ZnCl4·RH2O electrolytes appear to maximize for the LiCl/ZnCl2 molar 
ratio of 2/1, leading to the formation of what we term high-entropy 
electrolyte, characterized by a maximum in the competition between 
the dissociation of LiCl salts, breaking up extended [ZnCl4−m

2−m]n (n > 
3) aggregates into wide distribution of shorter aggregates (n ≤ 3), 
disruption of the free solvent hydrogen-bond network and exclusion 
of water from Zn2+ solvation25,26.

Interestingly, due to the mechanism of frustration discussed in the 
preceding, the Walden plot for Li2ZnCl4·RH2O electrolytes shows some 
deviation from the Walden rule (Supplementary Information)27. Near 
room temperature in Fig. 1d, Li2ZnCl4·9H2O shows sub-ionic behaviour 
in accordance with highly concentrated aqueous systems due to ion 
pairing28. However, the plot of Li2ZnCl4·9H2O approaches the ideal 
‘KCl line’ as temperature (or η−1) decreases. This indicates that after 
eliminating ice nucleation and salt recrystallization, charge motion 

anode to be made compatible with aqueous electrolytes. Zn is relatively 
abundant and has a mature recycling infrastructure. Recent applica-
tion of ‘water-in-salt’ electrolytes has extended the electrochemical 
stability window of aqueous electrolytes3,4 and enabled new battery 
chemistries5,6, including zinc batteries that are presently limited to 
primary use7,8. However, the benefits of water-in-salt electrolytes for 
use in aqueous zinc batteries are not enough to overcome barriers to 
commercialization due to underwhelming reversibility of Zn plat-
ing/stripping, insufficient energy efficiency and poor transport at  
low temperatures.

Different from simply increasing salt concentration in a single-salt 
electrolyte, the addition of concentrated supporting salts has proved to 
be another promising strategy to largely exclude water from solvating 
Zn2+ in aqueous electrolytes9–11. As a result, such electrolytes exhibit 
a substantial decrease in hydrolysis and a corresponding increase 
in the reversibility of Zn plating/stripping. However, its potential of 
improving low-temperature ionic transport has not been systemati-
cally explored as any remaining ‘free water’ in electrolyte might freeze 
at low temperature.

In this work, we report on the addition of lithium chloride (LiCl) as a 
supporting salt into a zinc chloride (ZnCl2) aqueous electrolyte to form 
Li2ZnCl4·RH2O with varying R. Waters either remain as part of the free 
solvent network at low salt concentration or are preferentially coordi-
nated by Li+ ions, eliminating free water as salt concentration increases, 
while Cl− ions preferentially form ZnCl4

2− anions or small [ZnCl4-m
2-m]n 

anion clusters (m = 0, 1 or 2, i.e. the neighboring Zn cations are sharing 
by 1 Cl or 2 Cl; n ≤ 3). The length of these anionic clusters is limited by an 
increase in Li−Cl contacts appearing as R decreases, which preserves a 
high ionic conductivity12. Optimizing R, the Li2ZnCl4·9H2O electrolyte 
maximizes the degree of frustration to deliver a high-entropy electro-
lyte (HEE), simultaneously suppressing hydrolysis and crystallization 
at low temperature. This HEE enables a zinc–air battery to achieve an 
unprecedented cycling stability at operating temperatures between 
−60 and +80 °C, providing ~100% Coulombic efficiency for Zn strip-
ping/platting and >80% of the room-temperature power density at 
−60°C with excellent cycling stability.

Results
All-temperature transport properties of HEE
In dilute salt-in-solvent electrolytes, all ions tend to be solvated by highly 
polar solvents (bottom left of Fig. 1a). The strong dipolar interactions 
between solvent molecules promote structural ordering, resulting in a 
high glass transition temperature (Tg)13 or freezing point14. As an exam-
ple, electrolyte viscosity (η) of 2 mol kg−1 LiCl or 2 mol kg−1 ZnCl2 aqueous 
single-salt electrolytes increases rapidly as temperature decreases, as 
shown by the early rollover of ionic conductivities at >−20 °C (Fig. 1b). 
Their deviation from the Vogel–Tammann–Fulcher (VTF) equation15 
(corresponding dash lines) is due to the spontaneous increase of salt 
concentration caused by water crystallizing into ice. Adding non-polar 
or low-polarity solvents with low melting points into salt-in-solvent 
electrolytes can reduce their viscosity even at a low temperature. How-
ever, it also reduces the overall dielectric constant and the concen-
tration of charge carriers16,17, thereby decreasing ionic conductivity. 
Alternatively, it is well known that switching to the super-concentrated 
or ‘solvent-in-salt’ regime disrupts the intermolecular network in free 
solvent clusters (bottom right of Fig. 1a)12. As a result, the substantially 
reduced solvent activity suppresses the contraction and crystallization 
of solvent clusters at a low temperature. However, its high cation/sol-
vent ratio also introduces contact ion pairs and salt aggregates18, as evi-
denced by the sudden drop of ionic conductivities for aqueous LiCl·3H2O 
and ZnCl2·3H2O at −20 °C (Fig. 1b), resulting in salt/solvate precipitation 
and destabilization of the global structure at a low temperature. Both 
conventional solvent-in-salt and salt-in-solvent electrolytes contain 
local cluster structures with high structural ordering, limiting the ionic 
conductivity at a low temperature.
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in the Li2ZnCl4·9H2O electrolyte becomes less correlated, translating 
to superior transport properties at low temperatures.

The dynamics of water at low temperatures in Li2ZnCl4·9H2O, 
LiCl·3H2O and ZnCl2·3H2O electrolytes on timescales of ~100 ps−2 ns 
was probed using high-flux neutron backscattering spectrometry 
(HFBS). As shown in Fig. 1e, the mean square displacement (MSD) of 
water in Li2ZnCl4·9H2O is nearly constant down to −60 °C. The MSD falls 
off rapidly at −100 °C, which is close to Tg (−110 °C; Fig. 1c). By contrast, 
the MSDs of LiCl·3H2O and ZnCl2·3H2O started to drop at −25 °C, which 
correlates with their deviations from VTF behaviour (Fig. 1b). The MSD 
for LiCl·3H2O showed hysteresis due to water crystallization observed 
at −30 °C in cooling and melting at −10 °C in heating in accordance 
with the hysteresis observed in conductivity (Fig. 1b insert), while both 
Li2ZnCl4·9H2O and ZnCl2·3H2O showed no hysteresis during the cool-
ing and heating cycle. This observation indicates that the hysteresis 
in ionic conductivity observed for ZnCl2·3H2O (insert in Fig.1b) is due 
to changes of the [ZnCl4−m

2−m]n aggregates and is not correlated with 
water MSD.

The subtle microscopic structure changes of water at low tem-
perature were also evaluated using small-angle neutron scattering 
(SANS), using D2O to enhance sensitivity. Figure 1f demonstrated that 
Li2ZnCl4·9D2O and Li2ZnCl4·10D2O electrolytes show a typical power-law 

behaviour at low Q (wave vector transfer of neutron), indicative of a 
homogeneous fractal structure at length scales >100 nm. The linear 
(in log–log scale) scattering profiles for the Li2ZnCl4·9D2O electrolyte 
showed no temperature dependence during cooling from 293 K to 
173 K, indicating that a homogeneous liquid phase remained and no 
ice nucleation occurred across the investigated temperature range29. 
As a reference, sudden changes happened below 213 K for LiCl·3D2O 
and ZnCl2·3D2O (Supplementary Fig. 3), which correlated with the 
observed changes in ionic conductivity (Fig. 1b) and dynamic meas-
urements (Fig. 1e).

Characterization of high-entropy solvation structure
Density functional theory- (DFT-) based Born–Oppenheimer molecu-
lar dynamics (BOMD) simulations and polarizable force-field-based 
molecular dynamics (FF-MD) simulations provided further insight 
into the structure and transport for single-salt and bi-salt electrolytes 
(Fig. 2). The structures of Li2ZnCl4·9H2O, Li2ZnCl4·6H2O and LiCl·3H2O 
electrolytes predicted by molecular dynamics (MD) simulations were in 
excellent agreement with high-energy X-ray scattering measurements 
(Fig. 2b and Supplementary Fig. 4a–c). BOMD and FF-MD simulations 
of Li2ZnCl4·RH2O showed the Zn−Cl coordination number remained 
fixed ~4 independent of water concentration from R = 15 to R = 6 (green 
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Fig. 1 | Transport properties over wide temperature window. a, Illustration 
of solution structure in different electrolytes. b, Arrhenius plots of the overall 
ionic conductivities of Li2ZnCl4·9H2O electrolyte compared with concentrated 
LiCl·3H2O, ZnCl2·3H2O solutions and dilute (2 mol kg−1) LiCl and ZnCl2 aqueous 
solutions. Circles, experimental data; dashed lines, the fitting curves of VTF 
equation. Insert shows the hysteresis loops (same colours as in the main 
figure) for each electrolyte during the measurement cycle with a cooling 
course (solid lines, 80 °C → −70 °C), then a heating course (dashed lines, 
−70 °C → 80 °C), with an equilibrium time of 5 h for each temperature. c, The 
overall ionic conductivities (solid lines) of LiCl−ZnCl2−9H2O solutions with 
different LiCl/ZnCl2 ratios from 0/1 to 1/0 at different temperatures. The glass 
transition temperatures (Tg) measured by DSC are shown as dashed line. d, 
Walden plot for the Li2ZnCl4·9H2O, LiCl·3H2O and ZnCl2·3H2O electrolytes at the 

temperature range from +80 to −70 °C. The prefactor CΛ is 5/3 for Li2ZnCl4·9H2O, 
1 for LiCl·3H2O and 3 for ZnCl2·3H2O (see detail calculation in Supplementary 
Information). In a Walden plot, electrolyte solutions can be classified in terms 
of their performance as ionic conductors: superionic (upper-left region above 
the ideal KCl line), good-ionic (on the ideal line), sub-ionic (bottom right region 
under the ideal line) or non-ionic (far below the ideal line) liquids and solutions. 
Insert shows viscosity of these electrolytes as functions of the temperatures. e, 
Temperature dependence of MSD of Li2ZnCl4·9H2O, LiCl·3H2O and ZnCl2·3H2O 
solutions measured by fixed window scan with HFBS. f, SANS intensity profile for 
Li2ZnCl4·9D2O and Li2ZnCl4·10D2O at different temperatures (173 K–293 K). Data 
are presented as mean values ± standard error of the mean. Error bars represent 
standard error propagation from the counting statics of the measurements 
(square root of the number of neutrons scattered at that Q).
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symbols in Fig. 2c), while barely any water (≤0.2) is observed in the first 
solvation shell of Zn (blue symbols in Fig. 2c). The ZnCl2·RH2O (R = 4−17) 
single-salt electrolyte also showed a preference for Cl− approaching 
over water in the Zn2+ first solvation shell (Supplementary Fig. 4d), 
in good agreement with previous reports24,30–32. However, water is 
not completely excluded from the Zn2+ solvation shell in single-salt 
electrolyte with Zn2+ being hydrated by 0.4−1.0 waters in ZnCl2·RH2O. 
The extended [ZnCl4−m

2−m]n ionic networks (n > 3) in ZnCl2·RH2O break 
up into smaller anions ZnCl4

2− and short [ZnCl4−m
2−m]n chains (n ≤ 3) in 

Li2ZnCl4·RH2O with the help of extra Cl− donated by the added LiCl salt. 
They are bridged via the halogen and mobile Li+ hydrates that act as 
‘water sponges’ in Li2ZnCl4·RH2O (Supplementary Fig. 5a). The number 
of coordinated Cl− with Li+ showed an increase with increasing salt 
concentration but remained below 1.3 even for the most concentrated 
electrolyte (R = 6), which reflects a maximization in the dissociation of 
Li+−ZnCl4

2− pairs (Supplementary Figs. 5–7 and extended discussion in 
Supplementary Information). This level of mutual frustration between 
hydrogen bond network of water molecules and Li+−ZnCl4

2− ion pairs 
guarantees a high-entropy solvation structure as expected.

The formation of ZnCl4
2− complex anions and hydrated Li+ cation in 

Li2ZnCl4·RH2O electrolytes was also confirmed by Raman spectroscopy 
between 100 cm−1 and 450 cm−1 (Fig. 2d). Two fitted Gaussian peaks at 
110 cm−1 (component of ν2 and ν4 modes) and 280 cm−1 (ν1 modes) in 
Li2ZnCl4·9H2O were assigned to the characteristic vibrational mode of 
zinc tetrachloride − ZnCl4

2− (refs. 33,34). Crucially, the Zn−O peak attrib-
uted to [Zn(OH2)6]2+ at 383 cm−1 is absent in Li2ZnCl4·9H2O. When the salt 
was diluted to 1 mol kg–1, the ZnCl4

2− ν1 modes were still dominant but 
shifted slightly to 283 cm−1, and a small peak at 383 cm−1 related to the 
hexahydrate species appeared. Interestingly, ZnCl2·3H2O still showed 
the same [Zn(OH2)6]2+ peak even though the Zn2+/H2O ratio increased 
to 1/3 along with an extra peak for ν1 modes of long [ZnCl4−m

2−m]n aggre-
gation. The coexistence of hydrated Zn2+ and di-, tri- and tetrachloro 
complexes in the ZnCl2 electrolyte confirmed the lack of sufficient 
Cl− to satisfy tetrahedral ZnCl4

2−, which drives formation of large Zn−Cl 
network aggregates as predicted by BOMD simulation (Supplementary 
Fig. 5). The Raman band between 2,800 cm−1 and 3,800 cm−1 shows 
the O−H stretching vibration modes of water molecules (Fig. 2e). In 
dilute solution (1 mol kg−1), the O−H stretching vibration exhibited 
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Zn2+ and Li+ from MD simulations using modified atomic multipole optimized 
energetics for biomolecular simulation (AMOEBA) force field (filled symbols) 
at 25 °C for Li2ZnCl4·RH2O electrolytes; the coordination numbers from the 

last 20 ps of BOMD simulations for replica r1 using PBE-D3BJ and revPBE-D3BJ 
functionals at 177 °C are given as open and crossed open symbols, respectively. 
d,e, Raman spectra of Li2ZnCl4·RH2O at the Raman shift range of 100–450 cm−1 (d) 
and 2,800−3,800 cm−1 (e). All the Raman bands are fitted by Gaussian peaks with 
coefficient of determination R2 > 0.999. f, The activity coefficient of water as a 
function of water molar fractions estimated by vapour-pressure measurement at 
22 °C. g, The activity coefficients for Li+ (upper) and Zn2+ (lower) as a function of 
their concentrations in various aqueous solutions estimated by the equilibrium 
potential shift of LixFePO4 (x = 0.5) and Zn metal electrodes, respectively.
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the same broad Raman band as the pure water, which is attributed to 
five hydrogen-bonding environments: DDAA (double donor–double 
acceptor), DDA (double donor–single acceptor), DAA (single donor–
double acceptor), DA (single donor–single acceptor) and free OH in 
free water clusters35. The double proton donor modes (DDAA and DDA) 
can exist only in the hydrogen-bond network of free water clusters. In 
Li2ZnCl4·9H2O, only DAA and enhanced DA peaks are observed, indicat-
ing that most of the water was confined in the first solvation shell of 
Li+. Different from the ‘water-in-bi-salt’36,37 and highly concentrated 
ZnCl2·RH2O electrolytes12, Li2ZnCl4·RH2O can stabilize water even at 
a low Li+/H2O ratio (1/5) or a low cation/H2O ratio (3/10). The dissocia-
tion of Li+/ZnCl4

2− ion pairs and more sufficient water solvation were 
also confirmed by the enthalpy change of solution during the mixing 
of LiCl and ZnCl2 aqueous solutions at a fixed cation/water ratio (Sup-
plementary Fig. 8a). An average energy of 36 joules per mole of water 
was released when LiCl·3H2O was added to ZnCl2·3H2O until the Li/Zn 
ratio reached 2/1 (calculation detail in Methods). As a reference, neg-
ligible enthalpy differences were detected in dilute dual-salt solutions 
and the single-salt aqueous systems. The enthalpy change of mixing 
results from the redistribution of Cl− and H2O associations effectively 
suppressing Li+/ZnCl4

2− ion pairing and increasing hydration of Li+, mak-
ing the electrolyte more thermodynamically stable with a high entropy.

The rearrangement of the local solvation structure is further stud-
ied by examining the activity coefficients of the water and cations. 
We measured water activity coefficients of Li2ZnCl4·RH2O from the 
vapour-pressure ratio of Li2ZnCl4·RH2O solutions to the saturated 
vapour pressure of pure water at 22 °C (2.69 kPa). Figure 2f shows the 
dependence of the water activity coefficient on the mole fraction of 
water in Li2ZnCl4·RH2O solutions. These coefficients may be overes-
timated because the complex salt Li2ZnCl4 is treated as two LiCl and 
one ZnCl2 in the calculation of the water mole fraction. Despite this 
overestimation, the water in Li2ZnCl4·RH2O (R ≤ 9) exhibited much 
lower activity coefficients than LiCl−H2O, ZnCl2−H2O and 21 m LiTFSI−
H2O, which are normally considered as highly hydrated systems37–39. 
As water molar concentration decreases from 95 mol% to 67 mol%, 
which equates to a salt concentration increase from 1.0 mol kg−1 to 
18.5 mol kg−1 (Li2ZnCl4·6H2O), the vapour pressure of water drops from 
2.33 kPa to 0.088 kPa, and the water activity coefficient decreases from 
0.92 to 0.09 (red line in Fig. 2f) because of a sufficient hydration effect in 
the Li+ ‘sponge’. The substantially reduced water activity largely serves 
to suppress the freezing or boiling in Li2ZnCl4·RH2O (R ≤ 9) electrolytes 
as shown in the thermal analysis in Fig. 1.

The activity coefficients γ of Li+ and Zn2+ in Li2ZnCl4·RH2O elec-
trolytes were also estimated by the equilibrium potential of Li0.5FePO4 
and Zn metal electrodes, respectively (Fig. 2g; calculation details in 
Supplementary Information). Remarkably, the γLi in Li2ZnCl4·6H2O 
are 5 × 105 times higher than that at 1.0 mol kg−1. The large increase in 
γ has been observed previously in other highly concentrated aque-
ous solutions37,40 and is closely related to the changes of electrolyte 
solvation structure. Such a trend is beyond the scope of conventional 
Debye–Hückel theory but can be rationalized qualitatively through the 
Stokes and Robinson hydration effect. The mean ionic activity increases 
with decreasing water activity. More interestingly, the rate of increase 
in γLi for Li2ZnCl4·RH2O (R < 11) is much larger than that in LiCl solutions, 
while γZn in Li2ZnCl4·RH2O increases slower than that in ZnCl2 solutions 
(Fig. 2g). The large difference in Li/Zn-ion activity between single-ion 
and dual-ion electrolytes is attributed to reducing the prevalence of 
Li−Cl ion pairs and Zn−H2O contacts in Li2ZnCl4·RH2O as the dissociated 
Li−Cl donates Cl− to Zn2+, thus freeing up water from the Zn2+ solvation 
shell to hydrate Li+ as observed in MD simulations.

Reversibility of Zn metal anode at various temperatures
The electrochemical performance of the Zn metal anode in 
Li2ZnCl4·9H2O electrolyte and ZnCl2·3H2O reference electrolyte 
were evaluated at a current of 0.2 mA cm−2 with an aerial capacity of 

0.2 mAh cm−2 using the Zn||Zn symmetric cells in the temperature 
range of 80 °C to −70 °C (Fig. 3a). The voltage profiles (a sum of the 
overpotentials for Zn stripping/plating) of the Zn||Zn cells with both 
Li2ZnCl4·9H2O and ZnCl2·3H2O electrolytes show excellent stability 
with a negligible voltage fluctuation during repeated cycling at 20 
and 80 °C, similar to most non-alkaline electrolytes7,8. However, when 
the temperature decreases from 20 °C to −70 °C, the overpotential 
of the Zn||Zn cell with Li2ZnCl4·9H2O electrolyte shows only a mod-
est increase from 52 mV at 20 °C to 201 mV at −70 °C. By contrast, the 
Zn||Zn symmetric cell with ZnCl2·3H2O electrolyte showed a dramatic 
polarization increase to >1.8 V at temperatures <−40°C (Fig. 3b) due to 
a large reduction in conductivities (Fig. 1b) and transference numbers 
(Supplementary Fig. 2b) at a temperature of −40 °C. With a high current 
density of 1 mA cm−2 or areal capacity of 4 mAh cm−2, the Zn||Zn cell with 
Li2ZnCl4·9H2O electrolyte still shows decent overpotentials across the 
whole temperature range (Supplementary Fig. 9).

Coulombic efficiency (CE) of Zn plating/stripping in Li2ZnCl4·9H2O 
at various temperatures was further evaluated using Ti||Zn asymmetric 
cells at a current of 0.4 mA cm−2 with a high capacity of 2.0 mAh cm−2 
(Fig. 3b). An initial CE of 97.50% was achieved at 20 °C. CE increases to 
~99.99% after 20 cycles and maintains this high CE for over 100 cycles. 
The average Zn plating/stripping CE can even reach ~100% at −70 °C 
due to further reduction in the activity of water. At 80 °C, the CE is still 
greater than 99.95%. These results reflect the highest measured Zn CEs 
reported across a wide temperature range for aqueous electrolytes9. 
Similarly high CEs were also achieved at a higher current density of 
1 mA cm−2 (Supplementary Fig. 10) and different depths of discharge 
(Supplementary Fig. 11). After 100 cycles, the Zn plated on the Ti sub-
strates still exhibited a dendrite-free morphology (Supplementary 
Fig. 12). CEs of Zn anode strongly correlated with pH values and the 
water content (R) in Li2ZnCl4·RH2O and ZnCl2·RH2O electrolytes due 
to hydrogen evolution. Figure 3c shows the relationship between pH 
values and CEs of the Zn anode at 20 °C. For ZnCl2·RH2O electrolytes, 
even at the highest concentrations (18 mol kg−1), pH remains a some-
what acidic ~4 with a low CE of 95%. By contrast, when the water content 
is reduced to R ≤ 9 in Li2ZnCl4·RH2O, the pH is near neutral and results 
in a high Zn CE of ~99.99%.

Water reduction potentials depend on the solvate structure as 
revealed by DFT calculations (Fig. 3d and Supplementary Fig. 8b–h). 
Water molecules in aqua Zn ions such as Zn2+(H2O)6 are the most reduc-
tively unstable, followed by waters in the hydrated Li+ solvation shell 
due to the strong electric fields, which polarize waters in the inner 
solvation shell. As Dubois et al.41 and Zhang et al.10 reported, coordi-
nated waters indeed have higher reduction potentials than free water 
microscopically in most cases, although both solvates are expected 
to undergo H2 evolution reaction at typical overpotentials the elec-
trolyte is experiencing during Zn plating41. In Li-based water-in-salt 
electrolytes, this limitation is addressed through aggregation of 
Li−TFSI pairs in the super-concentrated regime, which elevates the 
reduction potential of the anion to be thermodynamically competi-
tive with water reduction42. For ZnCl2·RH2O electrolytes, the limited 
availability of Cl− is unable to eliminate the presence of water in the 
Zn2+ coordination shell, and the acidic pH of the electrolyte raises the 
H2 evolution reaction potential. By contrast, as water content drops to 
R ≤ 9 in Li2ZnCl4·RH2O, not only is water excluded from Zn2+ coordina-
tion but the average coordination number of Li+ and Cl− increases to 
at least 1 (Fig. 2c) as Li+(H2O)3 tends to share Cl− ions that are bound 
to Zn2+. The presence of Cl− in the Li+ shell depolarizes the remaining 
waters in the solvation shell and decreases the H2 evolution potential, 
suppressing water decomposition (the neutral pH has a similar effect 
for free waters). Given the extended electrochemical stability window 
of Li2ZnCl4·RH2O (Supplementary Fig. 13), generation of thick oxide or 
hydroxide passivation commonly found on a zinc metal anode operated 
in aqueous electrolytes would be largely suppressed. The absence of a 
solid electrolyte interphase on the cycled Zn anode in Li2ZnCl4·9H2O 
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electrolytes was confirmed by X-ray photoelectron spectroscopy (XPS) 
characterization. Figure 3e–f show the XPS of the Zn anode surface 
after the 20th plating/stripping cycle in Li2ZnCl4·9H2O and ZnCl2·3H2O 
electrolytes. No ZnO or Zn(OH)2 was detected in 2p3/2 core level of Zn 
anode surface cycled in Li2ZnCl4·9H2O electrolyte. By contrast, an extra 
fitting peak at 1,020.81 eV attributed to ZnO (Znii) was found even in 
highly concentrated ZnCl2·3H2O43,44. Meanwhile, the Gaussian–Lor-
entzian peak with a binding energy of 529.81 eV can be ascribed to 
O2− ions in the wurtzite structure of ZnO45,46. The other peak located at 
532.09 eV was assigned to the presence of C=O bonding originating 
from surface adsorbed organic residues. Therefore, ZnO was formed 
on cycled Zn anode in ZnCl2·3H2O electrolyte but was absent on cycled 
Zn in Li2ZnCl4·9H2O electrolytes.

Zn–air battery enabled by HEE
Zn–air pouch cells using platinum–carbon catalyst (5% Pt loading) 
coated porous carbon as an air cathode and commercial porous Zn metal 
as an anode were assembled to demonstrate the unprecedented thermal 
stability of Li2ZnCl4·9H2O electrolyte between 80 °C and −60 °C (Fig. 4). 
Figure 4a shows 10 h charge/discharge profiles at a specific current of 
0.4 mA cm–2 with a discharge potential of 1.07 V and a charge potential 
of 1.76 V at 20 °C. Notably, the average discharge potentials shifted to 
0.84 V and 0.67 V only after the temperature dropped to −40 °C and 
−60 °C, respectively. The Zn–air cell operated stably in ambient air for 
700 h at both 20 °C and −60 °C with a 10 h charge and discharge dura-
tion time per cycle (Fig. 4b). Besides the excellent ionic conductivity 
retention, the uniqueness of Li2ZnCl4·9H2O electrolyte also converts 

the cathode reaction from the 4e−/O2 pathway (O2 + 2H2O + 4e− ↔ 4OH−) 
into a more facile 2e−/O2 pathway (Zn2+ + O2 + 2e− ↔ ZnO2) to guarantee 
the fast kinetics at low temperature. By contrast, all the commercial 
batteries fail to cycle properly because of a high cell impedance below 
−20 °C at the C/10 rate (Supplementary Fig. 14). Since the vapour pres-
sure of water for Li2ZnCl4·9H2O electrolyte was only 350 Pa, the water 
evaporation in an open atmosphere was negligible, ensuring a long-term 
practical operation.

The formation of ZnO2 on air cathode through 2e−/O2 reaction 
(Zn2+ + O2 + 2e− ↔ ZnO2) was confirmed by scanning electron micro-
scope (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). 
Figure 4c shows SEM images of air cathodes obtained after the tenth 
discharge. The discharge reaction product had a disk-like morphology 
with a diameter of 1−2 μm (upper-left part) on top of chuncky carbon 
black particles. EDX mapping showed the corresponding distribu-
tion of Zn and O elements in this reaction product and no Cl distribu-
tion, excluding the possibility of forming zinc chloride hydroxide 
monohydrate (Zn5(OH)8Cl2·H2O). To further identify the discharge 
products, air cathodes were examined by XRD (Fig. 4d), showing only 
obvious patterns of ZnO2 and carbon black. MD simulations predicted 
that the ZnCl4

2−-based aggregates remain intact in the electric double 
layer. The ZnCl4

2− species are attracted towards the air cathode surface 
(carbon) under a positive polarization, while water near ZnCl4

2− was 
bound to Li+, making it more oxidatively stable (Fig. 4e and Supple-
mentary Fig. 15). The Zn ion was much closer to the electrode surface 
(~4.3 Å) in Li2ZnCl4·9H2O than in regular electrolytes with one layer 
of Cl− in between47, which indicated a facile reaction route between 
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Fig. 3 | Zn metal anode performances. a, Galvanostatic Zn stripping/plating 
in a Zn||Zn symmetrical cell with Li2ZnCl4·9H2O and ZnCl2·3H2O electrolytes at 
0.2 mA cm−2 and temperature range from +80 to −70 °C. b, The voltage profiles of 
Zn plating/stripping on a Ti working electrode at 0.4 mA cm−2 and temperature 
range from +80 to −70 °C. Inset shows corresponding CEs of Zn||Ti asymmetrical 
cell versus cycle number. c, The pH values (top) and CEs of Zn plating/strapping 
(bottom) for Li2ZnCl4·RH2O and ZnCl2·RH2O electrolytes as a function of their 

water concentrations at 20 °C. d, The reduction potentials (versus Zn/Zn2+) for H2 
evolution reactions of different cation–water solvates species predicted by DFT 
calculations with solvates immersed in implicit solvent with dielectric constants 
ε = 20 (black) and ε = 78 (red). Jmol colour scheme is used: Li, purple; Zn, grey; Cl, 
green; O, red; H, white. e,f, Zn 2p3/2 (e) and O 1s (f) XPS spectra of Zn anode after 
the 20th stripping/platting cycle in Li2ZnCl4·9H2O and ZnCl2·3H2O electrolyte.
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Zn ion and peroxide. In terms of reaction free energy (Fig. 4f), there 
is a minor preference of −0.14 eV (ε = 20) and −0.13 (ε = 78) for O2

− to 
replace a Cl−, which made it favourable to advance the 2e−/O2 path-
way (Zn2+ + O2 + 2e− ↔ ZnO2). The smaller preference compared with a 
Zn(OTf)2 electrolyte also enhances the reversibility of this reaction in 
Li2ZnCl4·9H2O electrolyte. Just as in the Zn||Ti closed cells, no passiva-
tion layer (oxides or hydroxides) was found on the Zn metallic anode 
in these open Zn–air cells (Supplementary Fig. 16).

In addition to the Zn–air battery, Zn||ZnxVOPO4·2H2O zinc-ion bat-
teries also demonstrated unprecedented performance in Li2ZnCl4·9H2O 
electrolytes over a wide temperature range (Supplementary Fig. 17). At 
−70 °C and −80 °C, the Li2ZnCl4·9H2O electrolyte still provided a 90.0% 
and 81.1% discharge capacity retention relative to 20 °C, respectively, 
which is superior to the other reported low-temperature rechargeable 
batteries (Supplementary Video 1)16,17,48,49.

Discussion
In summary, a high-entropy electrolyte concept was demonstrated 
using a Li2ZnCl4·9H2O electrolyte. The competition between Li−Cl 
dissociation, reduction in the length of [ZnC4−m

2−m]n aggregates and 
disruption of the free solvent hydrogen-bond network produces a 
unique frustrated solvation structure with a high entropy that helps 
to retain excellent ionic conductivities where the solvent is greatly 
stabilized and crystallization is suppressed. Thus, both a wide electro-
chemical stability window (better than water-in-salt electrolytes) and 
an exceptional operating temperature range (−80 °C to +80 °C, found 
only in this electrolyte) were achieved simultaneously. Through our 
extensive characterization efforts, the demonstrated relationships 
among the solvation structure, transport and electrochemical stabil-
ity of the electrolyte provide a basis of understanding that inspires 
the future design of electrolytes for aqueous metal-ion batteries.  
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capacity-fixed mode (fixed capacity: 8.0 mAh cm−2) of the Zn–air pouch cell with 
Li2ZnCl4·9H2O electrolyte at the temperature range between 80 °C and −60 °C 
with a specific current of 0.4 mA cm–2 and a fixed capacity of 4.0 mAh cm−2. b, 
Long-term cycling performance (800 h) of Zn–air cells at 20 °C and −60 °C at 
a specific current of 0.4 mA cm−2. c, SEM images (left) and corresponding EDX 
mapping (Zn, O, C and Cl, right) of air cathodes obtained after tenth discharge. 
d, Corresponding XRD patterns of air cathodes obtained after discharge and 

charge after second and tenth discharges. e, Schematic snapshots (side view) of 
the interfacial structures at the air cathodes with positive polarization applied 
(charge density q = +0.0128 e− carbon–1) with the yellow isosurface highlighting 
[ZnCl4−m

2−m]n anions (n ≤ 3). Jmol colour scheme is used. The dark grey wireframe 
is the carbon electrode. f, Free energy change from M05-2X/6-311++G(3df,3pd) 
calculation with polarizable continuum models (PCM) of acetone and water (with 
the value in water in parentheses) implicit solvation model for the reaction of 
hydrated Li2ZnCl4 replacing one Cl− with O2

−.
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As a demonstration of the efficacy of the high-entropy solvation envi-
ronment concept, unprecedented stability of a Zn–air battery was 
achieved across a temperature range of −60 °C to 20 °C. Despite the 
wide use of chloride-containing electrolytes in commercial primary 
batteries (for example, zinc–manganese dioxide battery, Zn–carbon 
battery, lithium–thionyl chloride battery) and proposed in recharge-
able multivalent ion batteries (for example, zinc-ion, magnesium-ion, 
aluminium-ion), corrosion issues may need to be addressed by anti-
corrosion coating, inhibitors or carbonized current collectors for  
future applications.

Methods
Preparation of materials and electrolytes
All the chloride salts aqueous electrolytes were prepared by dis-
solving various molar ratios of anhydrous lithium chloride (LiCl; 
≥99%; Sigma-Aldrich) and anhydrous zinc chloride (ZnCl2; ≥99%; 
Sigma-Aldrich) in water (high-performance liquid chromatography 
grade). VOPO4·2H2O powder was synthesized by mixing 4.8 g of V2O5 
powder (≥98%; Sigma-Aldrich) in 26.6 ml 85% H3PO4 (ACS reagent, ≥85 
wt% in H2O; Sigma-Aldrich) and 115.4 ml distilled water. The mixture was 
refluxed at 110 °C for 16 h. The yellow-green VOPO4·2H2O powder was 
filtered, washed with acetone two times and dried under ambient condi-
tions. Zn pre-intercalated compound, ZnxVOPO4·2H2O, was prepared by 
reaction at ambient temperature of as-prepared VOPO4·2H2O powder 
with stoichiometric amounts of a 0.5 mM solution of zinc iodide (≥99%; 
Sigma-Aldrich) in distilled water with magnetic stirring for 12 h; after 
standing for 24 h in an open environment, the target product was col-
lected. The reaction is illustrated as follows:50

VOPO4 ⋅ 2H2O + xZnI2
H2O→ ZnxVOPO4 ⋅ 2H2O + I2

Electrochemical measurements
The ionic conductivity measurements were conducted using 
home-made two Ti disk (Sigma-Aldrich) electrode cells calibrated by 
0.1 mol l−1 NaCl standard electrolyte (Sigma-Aldrich). The four-point 
electrochemical impedance spectroscopy (EIS) measurements were 
performed with Gamry 345 interface 1000 using 5 mV perturbation 
with the frequency range of 0.01 Hz to 100,000 Hz in an environmen-
tal test chamber (Thermal Product Solutions). The air cathode for 
Zn–air batteries was prepared by doctor-blade coating the slurry of 5% 
platinum loaded carbon black (XC-72, Fuel Cell Store; 90 wt%), polyvi-
nylidene fluoride (10 wt%; Sigma-Aldrich) and n-methyl-2-pyrrolidone 
(Sigma-Aldrich) on carbon paper (thickness: 215 μm; Fuel Cell Store). 
The areal loading of catalysts was ~11 mg cm−2. VOPO4·2H2O cathode 
Zn-ion batteries were fabricated by compressing well-mixed active 
materials, carbon black (Sigma-Aldrich) and poly(vinylidenedifluoride) 
(Sigma-Aldrich) at a weight ratio of 70/20/10 on a titanium metal mesh 
(Alfa Aesar, 100 mesh). The areal loading of cathode material was 
~18 mg cm−2. Zn||Zn and Ti||Zn cells were assembled as CR2032-type 
coin cells using Zn metal disk (Alfa Aesar, 2 cm2) and glass fibre (VWR) as 
a separator. VOPO4·2H2O||Zn and Zn–O2 pouch cells (2 cm × 4 cm) were 
assembled using VOPO4·2H2O or air cathodes, commercial metallic zinc 
anodes and glass fibre as separator, respectively. Zn–air pouch cells 
were cut open on the cathode side. These cells were then galvanostati-
cally charged/discharged using a Land BT2000 battery test system in an 
environmental test chamber (Thermal Product Solutions). To separate 
the Li-ion conduction contribution from the Zn-ion transport in this 
high entropy system, the transference number tZn, defined as the net 
ratio of faradays of charge carried by the Zn constituent, was examined 
by the steady-state current method in a Zn||Zn symmetric cell41. Since 
the CE of Zn stripping/plating was close to 100% in Li2ZnCl4·RH2O (R ≥ 
9), tZn could be estimated by the following equation

tZn =
IS (ΔV − I0R0)
I0 (ΔV − ISRS)

where IS and I0 are the steady-state and initial currents, respectively, 
when 5 mV of polarization voltages ΔV are applied across the cell (Sup-
plementary Fig. 2c). The first data point was recorded at 0.05 s. R0 and RS 
are the initial and steady-state resistances measured by EIS to balance 
the potential change of interface resistance.

Raman spectroscopy
For the solution structure measurements, Raman spectra were col-
lected with a Horiba Jobin Yvon Labram Aramis Raman spectrometer 
using a laser (wavelength of 532 nm) at frequencies between 3,500 cm−1 
and 60 cm−1. Six spectra per sample were collected and integrated to 
get a high signal/noise ratio.

Differential scanning calorimetry
Phase and glass transitions were conducted at a slow heating rate of 
2 °C min−1 using two differential scanning calorimeters (DSC250 or 
MDSC 2920, both by TA Instruments). A liquid nitrogen cooler was used 
for low-temperature control, and calibration was performed using the 
standards of cyclohexane (−87.06 °C for a solid-solid transition and 
6.45 °C for melting), indium (156.60 °C for melting) and tin (231.93 °C 
for melting). For DSC samples, about 10 mg of electrolyte liquid was 
enclosed in an aluminium pan and lid (0219–0062, PerkinElmer Instru-
ments) and hermetically sealed with a crimper (0219–0061, Perki-
nElmer). Vitrification of a sample was achieved by predipping the 
sample into liquid nitrogen and subsequently scanning it up through 
its glass transition. Crystallization of a sample that was otherwise hard 
to crystalize was assisted by adding a small amount of mesocarbon 
microbeads (MTI Corporation) into the DSC sample as a nucleating 
agent to induce the desired crystallization.

MD simulations
Polarizable force-field simulations were performed with an in-house 
modified version of the Tinker-HP v.1.0 package and a locally modified 
AMOEBA-BIO 2018 force field51,52. Initial configurations for simula-
tions were generated with Materials Studio’s amorphous cell-packing 
utility at a density of 1 g ml−1; in all cases the density increases after 
volume relaxation53. We reduced ion charges by 2.5% and refit the 
Cl−OH2 (3.925 Å, 0.32 kcal mol−1), Li−Cl (3.7011 Å, 0.1451 kcal mol−1) 
and Zn−Cl (3.48 Å, 0.28 kcal mol−1) van der Waals terms. Scaling the 
charges slightly had a relatively large impact on the transport proper-
ties and improved agreement with experimental values. As a multitude 
of simulations with varying size and composition were prepared, we 
conserve as many of the settings between simulations as possible: in 
the constant number, constant pressure, and constant temperature 
(NPT) ensemble, all simulations are thermostated at 298.15 K unless 
noted otherwise and barostated at 1 atm using the Berendsen method 
with a 1.0 femtosecond (fs) integration time step using the Beeman 
integrator54, while all simulations in the constant number, constant 
volume, and constant temperature (NVT) ensemble employed Ber-
endsen thermostating at 298.15 K unless noted otherwise and the 
reference system propagator algorithm integrator with a 2.0 fs time 
step55. Non-bonded terms use a uniform cut-off of 10 Å if the box length 
is >20 Å. A long-range correction is always applied to van der Waals 
interactions. Particle mesh Ewald is used for electrostatics with a fixed 
alpha of 0.386 Å−1 and a conservative grid of 603 points (>1 point per 
Å3) for ZnCl2–RH2O (R = 4, 6, 8–11, 13, 15, 17) and Li2ZnCl4–RH2O (R = 4, 
6, 8–11, 13, 15, 17) simulations with ~2,200 waters each and LiCl–3H2O 
with 4,608 waters. A grid of 483 points is used for LiCl–RH2O (R = 3,4) 
simulations, each with 1,152 waters. The LiCl–RH2O simulations from 
the initial geometry were evolved for 6 ns in the NPT ensemble, then 
the final configuration was resized to match the average box size from 
the final 2 ns. The ZnCl2–RH2O and Li2ZnCl4–RH2O simulations evolved 
for 16 ns from the initial geometry in the NPT ensemble, with the final 
snapshots for each composition resized to match the average box size 
from the final 4 ns of the trajectory. All of these simulations were run for 
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24 ns in the NVT ensemble with the resized box and used for analysis. 
Coordinates were saved at a 2 ps frequency and the pressure stress 
tensor at an interval of 10 fs.

Two sets of trajectories were prepared for BOMD. The first set 
comprises smaller cells of Li2ZnCl4·RH2O (R = 6, 15) electrolytes that 
were prepared just as the larger cells but using higher temperatures 
as discussed in Supplementary Information. An initial set of four rep-
licas was prepared. Equilibration under constant pressure conditions 
was performed for 6 ns, with the average box size taken from the last 
2 ns. The final frame was rescaled to this average box size before 8 ns 
of constant volume dynamics was performed. Using the same box 
volume to create a different trajectory, a small 2% increase in the Zn−Cl 
repulsion term was added to slightly alter the solvation shell around 
the Zn. The effect was more pronounced on the 15/1 system than the 6/1 
system, where little change in solvation structure was observed. The 
non-bonded cut-offs were set to at least 7.0 Å, but we used 8.0 Å where 
it was possible and a 243 particle mesh Ewald grid. This set of trajecto-
ries was modelled with the PBE-D3 functional in BOMD. A second set 
of trajectories was added later for R = 6, 9, 10 and 15 in Li2ZnCl4·RH2O; 
they were set up and run the same way as the first set but with 0% Zn−
Cl repulsion scaling and 5% and 7.5% scaling to sample very different 
initial Zn coordination environments. This second set of trajectories 
was modelled with PBE-D3 and revPBE-D3 in BOMD.

The final structures from the smaller cell NVT runs were then used 
as inputs for BOMD simulations. BOMD calculations were performed 
with CP2K v.6.1 at the [PBE-D3 or revPBE-D3]/DZVP-MOLOPT-SR-GTH 
level of theory with PBE optimized pseudopotentials for core states 
using a 600 Ry cut-off56–63. Trajectories were heated in 100 K incre-
ments to their respective target temperatures (discussed in Supple-
mentary Information) using the Bussi velocity rescaling thermostat 
under constant volume conditions with 20 fs coupling constant64. 
Total annealing time was 10 ps using a 0.5 fs time step throughout. 
Up to 145 ps of isotropic constant pressure dynamics was performed 
starting from the thermalized NVT configurations, with 50 fs cou-
pling constant for the Bussi thermostat65. The first 10 ps is discarded 
as additional equilibration and changes in the coordination number 
around Zn are monitored after that. The bias that excludes Zn–Cl ion 
pairing in FF-MD is not present in BOMD; we monitor for convergence 
in the coordination numbers across all three replicates per composi-
tion over time.

Activity coefficient measurements
To study the activity of Li+ and Zn2+ as a function of the Li+ molality, 
the equilibrium potentials of the LixFePO4 (x = 0.5) electrode and Zn 
metal electrode in various electrolyte solutions were measured using 
a two-electrode cell with an Ag/AgCl (in saturated KCl aqueous solu-
tion) reference electrode, respectively. Water activity measurements 
were performed using a custom-built vapour-pressure measurement 
apparatus. Solutions were placed in a glass container, which had a 
sample/headspace ratio of approximately 1/1, that was connected to 
a vacuum system. For purging and degassing, the glass chamber was 
evacuated using a vacuum pump to P < 0.1 kPa and flushed three times 
with nitrogen. The volume and mass of the solution were measured in 
control experiments to ensure that the amount of sample loss during 
purging was negligible. After purging, the chamber was sealed, and the 
total pressure was monitored as a function of time as the vapour phase 
equilibrated with the solution phase. When the total pressure reached 
a constant value, the pressure was recorded. A k-type thermocouple 
was inserted into the liquid mixture to ensure the temperature was 
22 °C before recording the pressure. It was assumed that the vapour 
phase was pure water (no salt evaporation). Control experiments were 
conducted with pure milli-Q water, and the tabulated saturated vapour 
pressure of 2.69 kPa was accurately measured. Raoult’s law was used 
to calculate the water activity in the liquid phase from the measured 
water-vapour pressure.

Neutron and X-ray scattering
SANS measurements were performed on the very small-angle neutron 
scattering (vSANS) instrument at the National Institute of Standards 
and Technology Center for Neutron Research. Samples were contained 
in 1 mm path standard titanium demountable cells using titanium 
windows. A closed-cycle refrigerator was employed for controlling the 
sample temperature with an accuracy better than 1 K. Data were col-
lected using two incoming neutron wavelengths of 5 Å and 8.5 Å with 
Δλ/λ ≈ 0.13. With the combined use of two detector banks, a Q range 
from ~10−3 Å−1 to ~0.2 Å−1 was covered. Employing standard routines66, 
raw data were corrected for background and empty cell scattering and 
further reduced to one-dimensional (1D) absolute intensity patterns 
using open-beam intensity.

X-ray scattering spectra of aqueous solutions were collected with 
beamline 11-ID-C at the Advanced Photon Source at Argonne National 
Laboratory with light wavelength of 0.11729 Å. Samples with an average 
volume of ~0.2 ml were held in a 3 mm quartz tube, while 2D diffraction 
images were collected on a GE amorphous silicon-based detector. All 
the preceding data were acquired at 300 K. Pair distribution functions–
G(r) were computed using GSAS II software. Scattering from an empty 
quartz tube was used for background subtraction. Corrections for 
fluorescence, X-ray polarization, Compton scattering and energy 
dependence were then applied.

Data availability
The datasets generated and/or analysed during the current study are 
available from the corresponding authors on reasonable request.
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