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BATTERIES

Solvation sheath reorganization enables divalent
metal batteries with fast interfacial charge
transfer kinetics
Singyuk Hou1†, Xiao Ji1†, Karen Gaskell2, Peng-fei Wang1, Luning Wang2, Jijian Xu1, Ruimin Sun1,
Oleg Borodin3*, Chunsheng Wang1*

Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to
lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet,
they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine
chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the
cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible
cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram,
respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.

E
nergy upgrades and the implementation
of electric transportation demand electro-
chemical storage systems with higher
accessibility, energy density, and safety
(1). Rechargeable divalent metal batteries,

including rechargeable magnesium and cal-
cium metal batteries (RMBs and RCBs), are
appealing alternatives to lithium-ion batteries
(LIBs) because of the crustal abundances of
Mg and Ca, which are more than 1000 times

that of Li; larger anode capacity from two-
electron transfer (3832 mA·hours cm−3 for
Mg and 2052.6 mA·hours cm−3 for Ca) (2);
low reduction potential of Mg and Ca metal
[−2.38 V versus standard hydrogen electrode
(SHE) for Mg and −2.76 V versus SHE for Ca];
and reduced safety concerns from the poten-
tially dendrite-free plating ofMgmetal anode
(3). To fabricate RMBs and RCBs with energy
densities comparable to or higher than that
of commercial LIBs, the metal anodes need
to be paired with cathodes with a potential
of >2.5 V versus Li+/Li (fig. S1 and table S1),
which necessitates the use of high-voltage
metal oxide cathodes (4).
In LIBs, a Li+ desolvates and transports

through the electron-insulating solid-electrolyte
interphase (SEI) to the electrodematerials (5, 6).
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Fig. 1. Overpotentials and CEs of Mg plating
and stripping in different electrolytes.
(A) The molecular structure and denticity of the
chelants. (B and C) The overpotentials at the
10th cycle for plating and stripping in Mg||Mg
cells at (B) 1.5 mA cm−2 for 1.5 mA·hours cm−2

and (C) 0.1 mA cm−2 for 0.1 mA·hours cm−2

in the blank and Ex. (D) CEs for Mg plating
and stripping in Ex in Mg||SS cells cycled
at 0.1 mA cm−2. (E) Long-term cycling of the
Mg||SS cell in E4 at a current density of
0.1 mA cm−2.
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Desolvation and transport of the divalent ions
through SEI and active materials, however, are
more challenging owing to stronger electrostatic
interactions (7–12), leading to large overpo-
tentials, electrolyte decomposition (8, 9), and
irreversible phase transformations or failure
to intercalate in cathode materials (13–15).
Reductive and chloride-containingnonaqueous
electrolytes avoid SEI formation on Mg anodes
but suffer from low anodic stability and in-
compatibility with current collectors and
battery casings (16–18). Aqueous electrolytes
assist Mg2+ intercalation in high-voltage cath-
odes (14, 15, 19, 20) but do not support reversible
metal anodes (16, 17). To bridge the incompa-
tibility among electrolytes to the cathode, anode,
and current collectors, electrolytes consisting
of noncorrosive electron-delocalizing anions,
such as magnesium bis(trifluoromethane-
sulfonimide) [Mg(TFSI)2] (21, 22), boron clusters
(23–25), alkoxyborates and alkoxyaluminates
(26–29), and an artificial SEI on a Mg anode,
were reported (30). However,Mg and Ca anodes
still suffer from insufficient coulombic effi-
ciency (CE) while large hysteresis is observed
on the cathode side.
We demonstrate that the multidentate

methoxyethyl-amine chelants [–(CH2OCH2CH2N)n–]
in the first solvation sheath of Mg2+ and Ca2+

enable both highly reversibleMg and Ca anodes

as well as fast (de)intercalation of Mg2+ and
Ca2+ into high-voltage layered oxide cathodes.
These chelants demonstrate 6 to 41 times
higher affinity forMg2+ than traditional ether
solvents, yet the chelant-rich solvation sheaths
bypass the energetically unfavorable desol-
vation process through reorganization, thus
reducing the overpotential and eliminating
the concomitant parasitic reactions for both
the anode and cathode. The reorganization
energy of these electrolytes can be tuned by
changing the dielectric constants and sizes
of the chelants.

Results and discussion
Mg plating and stripping in chelating electrolytes

A 0.5 M Mg(TFSI)2 in 1,2-dimethoxyethane
(DME) electrolyte was adopted as the baseline
(blank) because of its chemical stability and
commercial accessibility. The proposed elec-
trolytes are 0.5 MMg(TFSI)2 in DME-Mx (x =
1, 2, 3, or 4), in whichM1,M2,M3, andM4
are hexadentate, tridentate, and bidentate
chelants for Mg2+ (Fig. 1A). The quantities of
Mx are varied to keep the molar ratios be-
tween donor atoms in Mx to Mg2+ at 8:1
(materials and methods). These electrolytes
are referred to as Ex (x = 1, 2, 3, or 4).
Mg plating and stripping overpotentials

were evaluated inMg||Mg symmetric cells at a

variety of currents (fig. S2). Consistent with
previous studies, the overpotentials are around
2.0 V in the blank (21) but are substantially
reduced in Ex, dropping to below 0.1 V in
E4 (Fig. 1, B and C). Because the ionic con-
ductivities of Ex (4.0 to 5.3 mS cm−1) are
smaller than that of the blank (6.5 mS cm−1)
(fig. S3), the reduced overpotentials in Ex
are not attributed to bulk ion transport but
rather to the interfacial charge transfer kinetics.
As overpotentials reduce, the cycling CEs (cCEs,
the average CE after 10 cycles) in Mg||stainless
steel (SS) cells increase from 0% in the blank
(owing to noMg stripping at the cutoff potential
of 1.0 V versusMg2+/Mg) to more than 99.5%
inE4 (Fig. 1D) with stable overpotentials (Fig.
1E and fig. S4) and dendrite-free Mg deposits
(fig. S5).
The surfaces of the cycled Mg were charac-

terized with high-resolution x-ray photoelectron
spectroscopy (XPS). The decomposition products
fromDME and TFSI− are summarized in table
S2. No signs of Mx decomposition are found
in the N 1s spectrum (fig. S6). The species from
electrolyte decomposition, in particular –C=O
(C 1s and O 1s), crystalline Mg(OH)2 (Mg 2p),
–CFx (F 1s), –SOx (x < 2, S 2p), andMgSx (S 2p)
are abundant on Mg cycled in the blank but
diminish on Mg cycled in Ex (Fig. 2A). The
decomposition layer is also much thicker in
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Fig. 2. Tailoring Mg surface composition with the chelants. (A) High-resolution XPS spectra of C 1s, O 1s, Mg 2p, F 1s, and S 2p of cycled (100 cycles at 0.1 mA
cm−2) and pristine Mg. For S 2p high-resolution XPS, only S 2p 3/2 were labeled; the unlabeled peaks are corresponding S 2p 1/2 spin split peaks. (B) The relative
concentrations of decomposition species found on the cycled Mg surface. The peaks of –C=O in C 1s and O 1s are used to characterize polymeric and organic
decomposition products from DME. All peak areas are normalized to those of Mg0 to obtain relative concentrations. The red horizontal bars indicate the Mg plating and
stripping overpotentials. The low relative concentration region is shown on the right.
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the blank, as evidenced by the almost un-
changed F and O accumulations after 12-min
Ar+ sputtering (fig. S7). By contrast, the F and
O accumulations on Mg cycled in E3 and E4
are negligible and can be removed with a
much shorter sputtering time (fig. S7). The
relative concentrations of these decomposed
species show substantial dependence on the
overpotentials (Fig. 2B). Thus, by reducing the
overpotentials for Mg plating and stripping,
electrolyte decomposition is suppressed and
cCE is enhanced in Ex.

Solvation sheath structure

Without effective SEI, the solvation environment
of Mg2+ serves as the key to understanding
how Mx improves charge transfer kinetics
of theMg anode, which was probed using 13C
nuclear magnetic resonance (NMR). Chemical
shifts of methylene carbons in DME (dDME)
andMx (dMx) shift up-field in the presence of
Mg(TFSI)2 (Fig. 3A). These changes (DdDME

and DdMx) reflect the stoichiometric average
between bound and free states (supplementary
text). Thus, a smaller DdDME in Ex indicates
that DME is partially freed from the solvation

sheath (Fig. 3A, left). Meanwhile, the substan-
tial association of Mx in the solvation sheath
is evidenced by values of DdMx that are >10
times greater than those of DdDME (Fig. 3B).
UsingDdMx andDdDME, the relative affinities of
Mx-Mg2+ over DME-Mg2+ interactions were
quantified (table S3), in which M1, M2, M3,
andM4 show affinities that are 41, 12, 10, and
6 times greater with Mg2+ than with DME,
respectively (Fig. 3B). Separate analysis of N
and O stoichiometry through DdMx�N (Fig. 3A,
middle) and DdMx�O (Fig. 3A, right) (DdMxof
carbon next to N and O, respectively) shows
that the association of N in the solvation sheath
greatly reduces from E1 to E4 (pink circles in
Fig. 3B), but the association of O from Mx is,
in general, greater than that from DME in the
solvation sheath (Fig. 3B). Conversely, bond
lengths calculated from molecular dynamics
simulations show that Mg2+–N bonds inMx
are 0.2 to 0.3 Å shorter than those in mono-
dentate amines (31, 32), whereas the Mg2+–O
bond lengths remain the same for DME and
Mx (figs. S8 to S10). Therefore, the higher
affinity betweenMx and Mg2+ is likely to be
initiated by the strengthened Mg2+–N bonds

that in turn promote theMg2+–O association.
The formation of contact ion pairs (CIPs) be-
tween TFSI− andMg2+ was also characterized
with Raman spectroscopy because CIPs poten-
tially facilitate the decomposition of TFSI−

(33) and reduce anode reversibility. The S–N
stretching vibration in TFSI− that is sensitive
to ionic interactions was deconvoluted to
identify the solvent-separated ion pairs (SSIPs)
and CIPs (Fig. 3C, fig. S11, and supplementary
text). CIP percentages obtained by normaliz-
ing CIPs to total peak areas show that only 15
to 20% of the TFSI− are in contact with the
cations in both the blank and Ex (Fig. 3D).
Thus, themajor role ofMx is to displaceDME
instead of TFSI− from the solvation sheath.
Owing to the high affinity between Mx and
Mg2+, the solvation sheaths containing Mx
aremore stable than theMg2+(DME)3 solvates
in the blank by 0.3 to 1 eV (30 to 100 kJmol−1),
as determined from density functional theory
(DFT) calculations (Fig. 3E and figs. S12 and
S13). M1 has the strongest affinity to Mg2+

followed byM2 andM4 ≈M3, in agreement
with NMR results and molecular dynamics
simulations.
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Solvation sheath reorganization mediated charge
transfer on the Mg anode
To understand why solvates in Ex with much
higher binding energies than those in the
blank (Fig. 3E) support Mg plating and strip-
ping with smaller overpotentials, the electron
transfer from an electrode to solvated Mg2+

was analyzed. It is approximated as nonadi-
abatic (34), involving ionic intermediates with
the reorganized solvation sheath according
toMarcus theory (35). For an electrode-bound
electrochemical reaction, the overpotential (h)
represents the potential required to vary the
Fermi level (EF) of the electrode for each elec-
tron transferred (36) and the reorganization
energy (l) represents the energy to reorgan-
ize the solvation sheath to accept the electron
(Fig. 4A). The values of l were obtained by
fitting the Tafel plots for the Mg anode with

Marcus-Hush-Chidsey kinetics (37, 38) (equa-
tion S2 in fig. S14). To minimize interference
from the morphological difference of Mg de-
posits and the electrolyte decomposition during
Mg plating, only the stripping overpotentials
of the freshly polished Mg were collected for
fitting (fig. S14). The fitted l showed distinct
correlationswith the h in three regions,marked
as I, II, and III in Fig. 4B. Reactions inE3 and
E4 fall into region I, inwhich l forMg2+ redox
is considerably smaller than the onset of de-
composition potential (ED), resulting in little
electrolyte decomposition (Fig. 2), and the
h agrees well with the l, reflecting that the
electrons are transferred reversibly to Mg2+;
reactions in E2 and E1 fall into region II, in
which l overlaps with ED and the h slightly
deviates from the postulated l for Mg2+ redox,
reflecting that some side reactions take place;

and reactions in the blank fall into region III,
in which the l is larger than ED and the h
greatly deviates from the postulated l for
Mg2+ redox because the major reaction is
now dominated by electrolyte decomposition
(Fig. 4B).
The solvation sheath reorganization energy

(l) can be expressed as a dielectric continuum
formulation:

l ¼ e2

4pe0

1

a0
� 1

R

� �
1

eop
� 1

es

� �

where e0 is the vacuum permittivity, e is
electron charge, a0 is the solvated radius of
the cations, R is the distance between the
solvated ions and electrode surface, eop is
the optical dielectric constant, and es is the
static dielectric constant (39), in which the l
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is proportional to the distance part 1
a0
� 1

R

� �
and the dielectric part 1

eop
� 1

es

� �
. The dis-

tance part gradually reduces from the blank
toE4 (Fig. 4C) owing to a less compact solvation
sheath (smaller 1=a0 except forM3; table S4).
In addition, the formation of decomposition
products during cycling increases the distance
between the solvated ion and electrode R (Fig.
4C, fig. S15, table S5, and supplementary text).

This leads to an increase in l. The dielectric
part also reduces progressively from the blank
to E4 (Fig. 4D and table S6). Considering that
1
eop

and 1
es
represent fast and slow solvent mo-

tions upon electron transfer (40), respectively,
the smaller difference demonstrated by Mx
suggests that the asymmetric chelants provide
more polarizable environments compared with
DME. To summarize, the less compact and

more polarizable solvation sheath reduces
the l for electron transfer, which consequently
reduces overpotential by preventing electro-
lyte decomposition and promoting stable Mg
plating and stripping.
In addition to the l, substantial differences

were observed for the initial Mg2+/Mg+ re-
duction potentials for the Mg2+(M4)3 and
Mg2+(DME)3 solvates (figs. S16 to S18 and
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table S7), with Mg2+/Mg+ reduction most
readily occurring in Mg2+(M4)3, whereas
reduction of Mg2+(DME)3 required a much
larger overpotential by 0.4 to 0.6 V. An
intermediate reduction potential is observed
for Mg2+(M1)(DME) (fig. S16F) that is consist-
ent with the intermediate performance of the
E1 electrolyte (Fig. 1, B to D). The larger over-
potential to initiate electron transfer in the
blank likely contributes to the slower inter-
facial kinetics and electrolyte decomposition.
Because MgO is often present on Mg metal,
solvent reactivity with MgO was examined in
DFT calculations and it was found that the
defect-free surfaces are not reactive toward
DME or chelants (fig. S19 and table S8).

The solvation sheath mediated charge transfer
in the layered oxide cathode

On the anode, the solvation sheath reorganized
to the activated state at which the electron
transfer occurred. In the oxide cathode, how-
ever, the ion accepts an electron indirectly
through concerted intercalation near the tran-
sitional metal center, yet we found that the
Mx in electrolyte can also improve the charge
transfer kinetics on the cathode. Mg-pillared
layered MnO2 (Mg0.15MnO2) was used as the
cathode material, and E4 was used to eval-
uate the electrochemical performance of the
Mg||Mg0.15MnO2 cell owing to its higher an-
odic stability (3.8 V versus Mg2+/Mg) (fig.
S20). The Mg||Mg0.15MnO2 cell was charged-
dischargedbetween2and3.3V (versusMg2+/Mg)
at 0.5C (1C corresponds to a 200 mA g−1 ac-
tive material), and a reversible capacity of
190 mA·hours g−1 was achieved and main-
tained for 200 cycles (Fig. 5, A andB). Contrary
to the performance inE4, the charge-discharge
of theMg||Mg0.15MnO2 cell in the blank showed
little capacity at the same C-rate (Fig. 5A).
Charge transfer resistances (Rct) of the
Mg0.15MnO2 cathode in the blank and E4
were measured using electrochemical impe-
dance spectroscopy (EIS) in a three-electrode
cell with magnesiated Mo6S8 reference elec-
trodes (Fig. 5C) to exclude potential variation
from the Mg metal reference (fig. S21). The
charge-transfer processes of the Mg0.15MnO2

cathode inE4 and the blank are represented
by the semicircles in the EIS spectra with sim-
ilar characteristic frequencies. The values of
Rct determined by the diameters of the semi-
circles are two to three times smaller in E4
than in the blank (Fig. 5C), suggesting amuch
faster charge transfer kinetics.
We further characterized the Mg0.15MnO2

cathode to identify the cause of faster charge
transfer kinetics in E4. The reversible elec-
tron transfer to the Mg0.15MnO2 cathode was
demonstrated bymanganese (Mn) 2p 3/2 high-
resolution XPS spectra, in which the peaks as-
sociated with Mn4+ reduced and those peaks
associated with Mn3+ and Mn2+ intensified

(Fig. 5D). A shake-up satellite characteristic
of Mn2+ also appeared after discharge. The
change of the Mn oxidation states was re-
versed after charge, and the pristine state was
regenerated (Fig. 5D; see peak assignments in
table S2). Concerted with the electron transfer
is the Mg2+ (de)intercalation, demonstrated
first by reversible incorporation and extrac-
tion of 0.3 Mg2+ to the cathode after discharge
and charge measured by inductively coupled
plasma optical emission spectroscopy (table
S9). Because the number ofMg2+ incorporated
or extracted is in accord with the coulombic
capacity (Fig. 5A), Mg2+ is the only ion that
participated in the redox reaction. Unlike
Mo6S8 and TiS2, which demonstrate very
little change of lattice indexes upon Mg2+

(de)intercalation (41, 42), a substantial en-
largement of the interlayer distance was ob-
served after discharging the cathode in E4
(Fig. 5E), suggesting that larger species were
intercalated with Mg2+. The species were then
extracted from the oxide cathode together
with Mg2+ after the charge and the interlayer
distance was reduced (Fig. 5F). The elemental
distribution of the discharged cathode from
energy-dispersive x-ray (EDX) spectroscopy
demonstrated the presence of C and N in the
materials together with Mg2+ (Fig. 5G), in
combination with the characteristic peaks for
M4 observed in the attenuated total reflec-
tance Fourier-transform infrared spectrum in
the discharge cathode (fig. S22), confirming
the presence ofM4when an electron is trans-
ferred to the Mg2+ intercalated cathode. The
fact that M4 in the solvation sheath greatly
facilitates the charge transfer kinetics of the
cathode suggests that solvation sheath reor-
ganization also occurs in the cathode and limits
the interfacial charge transfer reaction kinetics
(Fig. 5H).
The generality of the electrolyte design

is demonstrated in other solvents used in
RMBs such as diglyme (fig. S23) and tetrahy-
drofuran (fig. S24). Extension to RCBs was
validated by adding M4B to 0.5 M calcium
tetrabis(hexafluoroisopropyloxy)borate-DME,
in which the Ca2+ plating and stripping cCE
increases from 80 (43, 44) to 96% (fig. S25).
M4B is a derivative ofM4with an extrameth-
ylene carbon to accommodate the larger size of
Ca2+ (fig. S26). This electrolyte was used to pair
the Cametal anode with aMg0.15MnO2 full cell
and demonstrates a 2.6-V average potential with
a reversible capacity of 210mA·hours g−1 at 0.5C
for 50 cycles (fig. S27).
In this study, we identified several essential

factors that are required for the cation sol-
vation sheath to successfully undergo reorga-
nization for a fast Mg2+/Mg redox reaction,
including (i) the solvation free energy for Mg2+

serving as a descriptor for salt dissociation, (ii)
the reduction potential for the Mg2+(solvent)n→
Mg+(solvent)n reaction to ensure that the

Mg2+/Mg redox occurs within the electrolyte
cathodic stability window, and (iii) the re-
organization free energy (l). To discover ad-
ditional chelants, several compounds were
screened using DFT (fig. S16) and validated
with cycling tests (fig. S27). Ethylenediamine
was found as a promising chelant or solvent
owing to its high free energy of solvation,
high reduction potential for Mg2+, and low l.
Methoxyethyl-amines were demonstrated

to circumvent commonly observed challenges
such as high interfacial impedance and over-
potentials for plating and stripping Mg and
Ca by preferential solvation of metal cations
and facilitating the initial reduction step. This
approach simultaneously solved two critical
challenges for divalentmetal batteries: the low
reversibility for anodes and sluggish kinetics
of metal-oxide cathodes, enabling the energy
densities of RMBs and RCBs to be comparable
to that of LIBs. The design principle is generally
applicable for divalent metal batteries. The re-
organization energy can be tuned by tailoring
the molecular structures through the intro-
duction of heterogeneous donor atoms and
less compact structures to further enhance
the kinetics and reversibility to match the ap-
plication standard for commercial LIBs.
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Solvation sheath reorganization enables divalent metal batteries with fast
interfacial charge transfer kinetics
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Efficient, rechargeable Mg and Ca batteries
Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the
abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking.
Hou et al. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place,
modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by
Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations
were used to understand the solvation structures. —MSL
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