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The energy density of lithium-ion batteries (LIBs)1–3 has gradu-
ally approached the upper limit of capacity allowed by inter-
calation chemistry (300 Wh kg−1)4,5. Increasing the capacity of 

LIBs to 500 Wh kg−1, a new goal set by automotive applications for a 
longer driving range with a single charge, will have to resort to more 
aggressive chemistries such as conversion-reaction or high-voltage/
high-capacity intercalation cathodes, all of which involve Li metal 
as the anode.

Li metal offers one of the highest specific capacities 
(3,860 mAh g−1) and the lowest redox potential (− 3.04 V versus stan-
dard hydrogen electrode (SHE))6,7. Its coupling with a high-voltage/
high-capacity cathode such as LiNi0.8Mn0.1Co0.1O2 (NMC811) or 
LiCoPO4 (LCP) would create a high-energy density cell that meets 
the 500 Wh kg−1 goal4. However, numerous fundamental challenges, 
arising from the highly reactive nature of both the Li-metal anode 
and these aggressive cathodes, preclude the practical realization of 
rechargeable Li-metal batteries (LMBs). Because of their high reac-
tivity, LMBs constantly operate with low Coulombic efficiency, sig-
nalling the rapid consumption of both electrolyte and Li and leading 
to a short cycle life. Though the instantaneous reactions between 
electrolytes and Li create a passivation layer called the solid elec-
trolyte interphase (SEI), its inhomogeneous composition and mor-
phology induce Li dendritic growth, which compromises LMB cycle 
life and safety8–14. On the cathode side, electrolyte oxidation leads to 
a cathode electrolyte interphase (CEI)15, which at high voltage does 
not sufficiently stabilize the electrolyte from sustained oxidation.

Early investigations of LMBs focused on ether-based electrolytes 
due to their lower reactivity with Li metal (Coulombic efficiency of 
~95–99%)12,13,15–17, but ethers are generally unstable towards oxida-
tion (< 4.0 V versus Li+/Li, Supplementary Fig. 1) and extremely flam-
mable (Supplementary Video 1). Carbonate electrolytes show high 
oxidation potential (4.3 V) and have been successfully used in com-
mercial LIBs, but the intrinsic reactivity of their carbonyl function-
ality towards Li metal confines the Li plating/stripping Coulombic 
efficiency to below 90%, accompanied by Li dendrite growth6,18. 

Furthermore, in the presence of aggressive cathodes such as 4.4 V 
NMC811 or 5.0 V LCP, the carbonate-based electrolytes become 
anodically unstable, with the thermodynamic tendency of releas-
ing CO2 and O2. Thus, though cells constructed with Li||NMC811 
and Li||LCP provide desirable energy densities, they are typically 
characterized by a low Coulombic efficiency19,20 and rapid capac-
ity fade19–24. To counter this issue, highly concentrated electrolytes 
have been used, substantially improving the reported stability16,25–27. 
However, the extremely high salt concentration considerably raises 
not only the cost but also electrolyte viscosity. The latter causes low 
wettability for both the electrodes and the separator, leading to poor 
rate performances and under-utilization of active materials.

Here, we report a non-flammable electrolyte that demonstrates 
excellent stability toward both a Li-metal anode and high-voltage/
high-capacity cathodes. It consists of 1 M lithium hexafluoro-
phosphate (LiPF6) in a mixture of fluoroethylene carbonate/3,3, 
3-fluoroethylmethyl carbonate/1,1,2,2-tetrafluoroethyl-2′ ,2′ , 
2′ -trifluoroethyl ether (FEC:FEMC:HFE, 2:6:2 by weight). Unlike 
the previously reported fluorinated electrolytes, which suffered 
from increasing impedance at the anode side28,29, this all-fluori-
nated electrolyte enables a high Li plating/stripping Coulombic 
efficiency of 99.2% and suppresses dendrites without raising 
the interfacial impedance. It also supports the stable cycling of 
NMC811 (Coulombic efficiency of ~99.93%) and LCP (Coulombic 
efficiency of ~99.81%) cathodes by forming a highly fluorinated 
interphase with thickness of 5–10 nm that is responsible for the 
effective inhibition of electrolyte oxidation and transition metal dis-
solution. Unprecedented cycling stabilities were obtained for both 
Li||NMC811 (90% retention at the 450th cycle) and Li||LCP cells 
(93% retention at the 1,000th cycle).

Electrochemical stability of all-fluorinated electrolyte
The Li-metal cycling stability in this all-fluorinated electrolyte 
was demonstrated using a Li-free configuration coin cell (Li||Cu) 
(Fig. 1a–c). Clearly, the all-fluorinated electrolyte generates lower 
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overpotentials (Fig. 1a) than conventional carbonate and FEC-
based electrolytes (Supplementary Fig. 2), though its conductivity 
(5.1 mS cm−1) is lower than that of ethylene carbonate/dimethyl car-
bonate (EC/DMC) or FEC/DMC (10.7 and 10.3 mS cm−1, respec-
tively) (Supplementary Fig. 3). The polarization for the Li plating/
stripping process increases with current density (Fig. 1b), reaching 
130 mV at a current density of 5 mA cm−2, which is comparable to 
that observed in concentrated ether electrolyte16, but lower than 
for 7 M LiFSI–FEC electrolyte26. The exchange current density esti-
mated from Tafel plots further confirmed facile Li plating/stripping 
(Supplementary Fig. 4). The all-fluorinated electrolyte also signifi-
cantly enhanced the Li stripping/plating Coulombic efficiency and 
cycling stability. At 0.2 mA cm−2, the Li plating/stripping Coulombic 
efficiency in the all-fluorinated electrolyte increases to > 99.2% 
within 50 cycles (Fig. 1c). As current density and Li turnover lev-
els reach 0.5 mA cm−2 and 2.0 mAh cm−2, the Coulombic efficiency 
remains at ~99% after the initial activation cycles (Supplementary 
Fig. 5). In contrast, DMC, EC/DMC, a carbonate–ether mixture and 
FEC/DMC demonstrate Coulombic efficiencies of ~20, ~80, 60–85 
(Supplementary Fig. 6) and 95%, respectively. As a result of the high 
reversibility, remarkable cycling stability and stable Li plating/strip-
ping potentials were demonstrated by the all-fluorinated electrolyte 
for over 500 cycles (Fig. 1c).

The oxidation stability of various electrolytes was evaluated 
using cyclic voltammetry (CV) on stainless steel electrodes. Ether-
based electrolyte, even at a high salt concentration (4 M), shows 
little stability against oxidation, as evidenced by a rapid increase 
in current above 4.0 V (Supplementary Fig. 1), while all other elec-
trolytes remain stable. Among these electrolytes (Fig. 1d), the con-
ventional EC/DMC formulation exhibits anodic decomposition 
above 4.3 V. The oxidation stability is improved after FEC replaces 
EC; however, a high anodic current is still observed at ~5.0 V, 

indicating an irreversible and sustained oxidation. In contrast, low 
anodic current was observed even at 6.5 V for the all-fluorinated 
electrolyte. A more aggressive floating test further confirmed 
this high anodic stability (Supplementary Fig. 7). Overall, the  
all-fluorinated electrolyte shows conspicuous stability towards 
both the Li-metal anode and high-voltage electrodes compared 
to all reported electrolytes, including concentrated ether and  
FEC-containing carbonate electrolytes.

Li-metal anode morphology
After 100 cycles, the Li surface in LiPF6–EC/DMC shows substan-
tial cracking and dendritic growth (Fig. 2a–c), where needle-like 
crystals with nano-to-micrometre high aspect ratios generate thick 
and highly porous Li depositions. This morphology is caused by 
continuous reactions between the Li metal and electrolyte, as evi-
denced by a low Coulombic efficiency (< 80%) and poor cycling 
stability. Replacing EC by FEC reduces the porosity of deposited Li 
and the thickness of the cycled Li from 341 µ m (blue line in Fig. 2c) 
to 290 µ m. However, the remaining porous structures and cracking 
still overwhelm the Li-metal surface (Fig. 2d–f). In sharp contrast, 
in all-fluorinated electrolytes, the Li metal maintains a dense and 
smooth surface, with non-dendritic Li mounds ~10 µ m in diameter 
(Fig. 2g–i and Supplementary Fig. 8). The thickness of the cycled Li 
metal was 266 µ m after 100 cycles. This dense Li deposition has three 
advantages: (1) higher safety, because the mound-like Li morphol-
ogy will be less likely to be able to penetrate separators; (2) higher 
Coulombic efficiency, indicating much lower Li and electrolyte con-
sumption; and (3) higher volumetric capacity, simply because of the 
much denser Li packing. As Supplementary Fig. 9 shows, when the 
porosity is > 65%, the Li metal becomes inferior to graphite in terms 
of volumetric capacity, which would eliminate the commercial via-
bility of LMBs. After 100 cycles, the Li porosity cycled in EC/DMC 
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Fig. 1 | Electrochemical properties for different electrolytes. a, Li-metal plating/stripping profiles on a Cu working electrode cycled in 1 M LiPF6 in our 
electrolyte (FEC:FEMC:HFE =  2:6:2) at a current density of 0.5 mA cm−2. b, Polarization profiles for Li plating/stripping in 1 M LiPF6 FEC/FEMC/HFE 
at different current densities. c, Li plating/stripping Coulombic efficiency in different electrolytes at 0.2 mA cm−2. Capacity: 1 mAh cm−2. d, Oxidation 
stabilities for different electrolytes as evaluated on stainless steel electrodes at a scanning rate of 5 mV s−1.
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increased by 36%, while only a slight increase of 6% was observed 
with the all-fluorinated electrolyte (Supplementary Fig. 10).

The dense Li morphology with the all-fluorinated electrolyte 
was quantitatively confirmed by mapping the fluorine distribu-
tion through the depth of cycled Li metal (Supplementary Fig. 11). 
Because the fluorine species is generated by reaction between the 
Li metal and the electrolyte, its distribution in the cycled Li metal 
reflects the depth of etching by the electrolyte. Almost all the fluo-
rine was found to reside within 1 µ m distance of the top of the Li 
if cycled in all-fluorinated electrolyte, indicating a thin and robust 
LiF-rich layer that prevents the reaction of electrolyte with the 
underneath Li. However, Li cycled in EC/DMC exhibits a much 
lower fluorine content, with an even distribution throughout its 
thickness (> 15 µ m), a clear indication of a porous structure. This 
porous Li immediately collapsed during an attempted sputtering 
process (Supplementary Fig. 11a), revealing its mechanical fragility 
and its poor resistance towards chemical/electrochemical etching.

Electrochemical performance of Li-metal full cells
LMB full cells were constructed using aggressive cathodes 
NMC811 and LCP in various electrolytes with a high areal capacity 
(~2.0 mAh cm−2). This loading presents a rigorous test for electrolyte 
stability, because it requires high Li-metal utilization and maximizes 
the parasitic reactions in each cycle. Meanwhile, the high voltages 
and highly catalytic surface of these cathodes also present a further 
challenge to the anodic stability of electrolytes30. All Li||NMC811 
cells in the three different electrolytes exhibited similar initial lithia-
tion/delithiation profiles with a specific capacity of 200 mAh g−1  
(Fig. 3a)31,32. The all-fluorinated electrolyte presents the best cycling 
stability (Fig. 3b,c and Supplementary Fig. 12), retaining 90% 
of the original reversible capacity after 450 cycles, with an aver-
age Coulombic efficiency of ~99.93% (Supplementary Fig. 13), in 

 comparison with < 20% capacity retention for EC/DMC within 200 
cycles (Fig. 3c and Supplementary Fig. 12a). Though FEC miti-
gates capacity fading, the Li||NMC811 still quickly decays in FEC/
DMC to ~50% of the original capacity after 300 cycles (Fig. 3c  
and Supplementary Fig. 12b). The capacity decay mechanism was 
investigated by electrochemical impedance spectroscopy (EIS; 
Supplementary Fig. 14), where the semicircle in the high-frequency 
region is designated as the bulk electrolyte resistance Re, and the 
other two are the interfacial resistances Rint1 +  Rint2 of the Li anode 
and NMC811 cathode. Both resistances, Re and (Rint1 +  Rint2), 
increase from the 5th to 100th cycles in the following order: FEC/
FEMC/HFE <  FEC/DMC <  EC/DMC (Supplementary Table 1).  
The largest increase in Re (129%) occurs for EC/DMC due to 
the continuous consumption of electrolyte at both the Li-metal 
and cathode surfaces within 100 cycles; the accompanying quick 
increase in (Rint1 +  Rint2) (463%) is due to the continuous SEI growth.  
In contrast, the increases in both Re and (Rint1 +  Rint2) in the all-fluo-
rinated electrolyte are only 92% and 67%, respectively. In addition 
to cycling stability, the Li||NMC811 cell in all-fluorinated electro-
lyte also exhibits promising rate capability (Supplementary Fig. 15). 
A reversible capacity of 170 mAh g−1 can still be delivered at a 2C 
rate. A more rigorous cycling stability test for LMBs was performed 
with a Li-free Cu||NMC811 cell, where all cyclable Li comes from 
the lithiated cathode (Supplementary Fig. 16). The cells with all- 
fluorinated electrolyte retained a capacity of 78 mAh g−1 after 30 
cycles, 60 times higher than that of cells in EC/DMC electrolyte.

Though the highly dense, electronically insulated F-rich CEI 
formed in situ by the all-fluorinated electrolyte stabilizes NMC811, 
possible intermixing of Li and Ni with O evolution during cycling 
could still occur and be responsible for capacity fade. To eliminate 
this factor, we constructed a 5.0 V LMB with LCP as the cathode, 
as this has higher structure stability than NMC811, despite its 
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Fig. 2 | Scanning electron microscopy of Li-metal morphology after 100 cycles in different electrolytes at a current density of 0.5 mA cm−2. a–i, Images 
after 100 cycles in 1 M LiPF6 in EC/DMC (a–c), 1 M LiPF6 in DMC/FEC (DMC:FEC =  8:2) (d–f) and 1 M LiPF6 FEC/FEMC/HFE (FEC: FEMC:HFE =  2:6:2) (g–i).  
Insets in a, d and g show optical images of Li foils after cycling. The pristine Li metal thickness is 250 µ m. In c, f and i, blue lines indicate the thickness of 
the Li metal cycled in different electrolytes, and red lines show the etching depth.
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higher operating potential (5.0 V). It has been reported that LCP 
can be charged–discharged reversibly in EC/DMC for only tens of 
cycles with a low Coulombic efficiency of 94–97%33–35. Though FEC 

enhanced the cycling stability, the capacity still quickly dropped to 
60% of the original value after 300 cycles (Fig. 3f and Supplementary 
Fig. 17), consistent with previous reports35. In sharp contrast, the 
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Fig. 3 | Electrochemical performances of LMBs using NMC811 and LCP as cathode materials. a, Initial galvanostatic charge–discharge curves of 
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 all-fluorinated electrolyte led to stable Li||LCP cells, as evidenced by 
a 93% capacity retention after 1,000 cycles (Fig. 3d,f), and a record-
high Coulombic efficiency of 99.81% (Fig. 3f) even as the cells were 
charged to 5.0 V. The cycling performance of high-voltage batteries 
has often been demonstrated at high C rates in previous reports, so 
that parasitic reactions can be minimized. To assess the stability of 
the electrolytes on the LCP surface more rigorously, we charged the 
cells to 5 V and kept them at open circuit for 48 h, then measured the 
recoverable capacity (Fig. 3e). The all-fluorinated electrolyte dem-
onstrated a capacity retention more than 2.5 times higher than that 
observed for FEC/DMC. When the test was conducted at 60 °C, more 
pronounced stabilization was observed, with a capacity retention 
more than 7.5 times higher than FEC/DMC (Supplementary Fig. 18),  
further confirming its stability against oxidation at high voltage.

Given the high Coulombic efficiency of the Li metal (99.2%) 
and high oxidation stability, our all-fluorinated formulation 
could be regarded as an appealing electrolyte for LMB applica-
tions with other cathode chemistries. Figure 4 demonstrates the 
cycling behaviour of a Li||NMC811 cell with onefold Li excess, 
which demonstrates a stable cycling performance without capac-
ity decay for more than 120 cycles. A high energy density of  
> 680 Wh kg−1 based on the total cathode/anode masses is achieved. 
Though the Li metal was depleted after 125 cycles in this cell, and 
the reversible capacity began to decay as in an anode-free battery 
(Supplementary Fig. 19), this battery still has the highest energy 
density among LMBs because of the minimized Li metal excess 
and the high energy of the cathode.

Chemistry at the interphase
Drastic differences in stability are observed between the three elec-
trolytes on both the Li-metal and high-voltage cathode surfaces 
because of the solvent compositions. The most significant difference 
in these electrolyte formulations lies in their fluorine content, 22 M 
for the all-fluorinated electrolyte, 1.8 M for FEC/DMC and 0 M for 
EC/DMC (Supplementary Fig. 20). This fluorine content eventu-
ally affects the composition and robustness of the respective inter-
phases. Quantum chemistry calculations predict LiF formation as a 
result of defluorination of the solvent bound to the Li+ and LiPF6 ion 
pairs (Fig. 5a, Supplementary Figs. 21 and 22 and Supplementary 
Note 1). Polarization of carbon cloth at 1.6 V in the all-fluorinated 
electrolyte confirmed these predictions (Supplementary Fig. 23)36,37. 
X-ray photoelectron spectroscopy (XPS) was used to identify both 
the SEI (Fig. 5d–f and Supplementary Figs. 24–27) and CEI com-
ponents (Fig. 5g and Supplementary Figs. 28–30). In C1s spectra, 
carbonyl species at ~289.0 eV, ethereal carbon at ~286.5 eV and 
hydrocarbon at ~285.0 eV were detected for the SEI formed in 
EC/DMC (Supplementary Figs. 24–26), along with LiF, Li2O and 
POxFy arising either from salt anion or trace contaminates, which 

agrees with previous reports13,15,18,38. The evolution of the selected 
elements with depth profiling (Fig. 5d) reveals that the SEI origi-
nating from EC/DMC is characterized by a distinctly low fluorine 
but rather high organic content. LiF significantly increases as EC is 
replaced by FEC (> 60%, Fig. 5e). Meanwhile, the C–C/C–H spe-
cies gradually reduce with surface thickness. This LiF-rich SEI sta-
bilizes the Li metal39. When the electrolyte becomes ‘all fluorinated’, 
with each co-solvent being a potential F donor, an extremely high 
LiF content (~90%) was detected, which increases with SEI depth 
(Fig. 5f) and indicates a more uniform interphase. LiF plays two 
critical roles here: (1) being a good electronic insulator and block-
ing electron tunnelling through the SEI40, which has been the main 
cause for continuous electrolyte consumption and capacity loss41; 
(2) presenting high interfacial energy to the Li metal7, which pro-
motes Li+ migration along the interface and encourages growth of 
the deposited Li metal in a parallel rather than vertical direction 
with regard to the electrode plane. This preferential alignment of 
Li-metal crystallization further reduces the specific surface area, 
minimizes parasitic reactions between the electrolyte and Li metal, 
and suppresses dendritic growth42.

Unlike for the SEI, CEI formation involves not only electrolyte 
but also active components in the cathodes; this includes transition 
metal dissolution, solvent H abstraction and O-layer reaction into 
super-oxides or peroxides. For unmodified NMC811 or LCP cath-
odes, electrolyte components experience sustained oxidation until a 
CEI forms and blocks electron transfer from the electrolyte to the 
cathodes5. Compared with EC/DMC and FEC/DMC electrolytes, 
the extremely high Coulombic efficiences achieved by the all-fluo-
rinated electrolyte on aggressive cathodes should originate from the 
F-rich CEI that deactivates the catalytic activity of the NMC or LCP 
surfaces. Quantum chemistry calculations (Supplementary Note 2) 
predict that direct oxidation of solvent molecules is energetically 
unfavourable around 5 V. Instead, solvent oxidation is accompanied 
by H transfer to another solvent (Supplementary Fig. 31) and/or 
cathode surface. Intermolecular H transfer occurs around 5 V for 
EC and > 5.5 V for FEC, FEMC and HFE (Supplementary Table 2). 
When the oxidation potential is calculated assuming open EC•

(-H) 
and FEC•

(-H) radicals as products, the oxidation stability decreased 
to ~4.2 and 4.9 V for EC and FEC, respectively. Thus, EC-containing 
electrolytes are expected to begin to be oxidized at 4.2 V (Fig. 1d), 
even in the absence of the active cathode surface. Density functional 
theory (DFT) calculations (Fig. 6) show that, for the fully charged 
CoPO4 cathode, H transfer occurs for all solvents, with reaction 
energies being the most favourable for EC (Fig. 6e) and the least 
favourable for HFE (Fig. 6h). EC also dissociates on the Ni0.5Mn1.5O4 
(ref. 43), LixMn2O4 (ref. 44) or layered oxide cathode surfaces45. EC is a 
poor CEI former because the EC•

(-H) radical decomposes with a bar-
rier of only 0.91 eV to evolve CO2, leaving only a fraction of EC•

(-H) 
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radicals to participate in the second H abstraction, eventually lead-
ing to polymerization, while the resulting hydrogen-rich polymer is 
still susceptible to further degradation. Because of the higher barrier 

(1.28 eV) for FEC•
(-H) ring opening compared to the EC•(-H), FEC•

(-H) 
is a longer-lived radical compared to EC•

(-H) (Fig. 6f), and will 
probably react with the FEMC•

(-H) (Fig. 6g) and HFE•
(-H) (Fig. 6h)  
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radicals formed near the cathode surface, resulting in a fluorine-
rich CEI as observed by Fourier-transform infrared spectroscopy 
(Supplementary Fig. 32). Alternatively, fluorinated radicals also 
bind to oxygen in CoPO4 (Supplementary Fig. 33), preventing the 
OH formation that facilitates transition metal dissolution46. Thus, in 
the all-fluorinated electrolyte, a protective CEI is highly likely, the 
composition of which is inevitably highly fluorinated.

XPS confirmed the significantly high F contents in the CEI 
formed by the all-fluorinated electrolyte on LCP (Fig. 5g and 
Supplementary Figs. 28, 29 and 34), supported by a F/O ratio of 10.7, 
in strong contrast with the values of 2.4 for EC/DMC and 4.0 for 
FEC/DMC. Thermodynamically, these fluorine-containing species 
(CFx and POxFy species) are much more resistant to oxidation than 
oxide species, and their presence on the cathode surface constitutes 
a conformal and dense CEI that effectively suppresses the parasitic 
reactions between cathode and electrolyte15. Similar CEI composi-
tions were also detected on cycled NMC811 (Supplementary Fig. 30).  
An amorphous layer (5–10 nm) was observed on the surfaces of 
both LCP (Fig. 5h,i) and NMC811 (Supplementary Fig. 35) after 
cycling in all-fluorinated electrolyte.

Besides the unique electrochemical benefits contributed by 
this all-fluorinated formulation, one additional advantage is non-
flammability, which is highly desirable but often unavailable 
from non-aqueous electrolytes. As demonstrated in flaming tests 
(Supplementary Fig. 36 and Supplementary Videos 2, 3 and 4), this 
electrolyte does not burn following ignition, in sharp contrast with 
the highly flammable EC/DMC or the flame-retarded but still com-
bustible DMC/FEC. This is attributed to the fluorine substitution 
on the alkyl moiety, which effectively serves as an inhibitor to the 
propagation of oxygen radicals during combustion47,48. Among the 
present cathode materials, the tendency of the delithiated NMC811 
to release the atomic state of oxygen, which would oxidize organic 
solvents at a relatively low temperature, is known49. The resistance 
of EC/DMC and FEC/FEMC/HFE against such oxidation was eval-
uated by differential scanning calorimetry (DSC, Supplementary 
Fig. 37), where the delithiated NMC811 was heated in the pres-
ence of the electrolytes. The major exothermic peak indicates that 
such oxidation occurs at a much higher temperature for the all-
fluorinated electrolyte. The combination of superior thermal stabil-
ity and non-flammability of the all-fluorinated electrolyte render 
LMBs much safer.

Conclusions
In this work a non-flammable all-fluorinated electrolyte has been 
developed for the aggressive battery chemistries using a Li-metal 
anode and high-capacity/high-voltage cathodes. This electrolyte 
simultaneously solves the four most pressing challenges faced by 
such high-energy batteries: (1) poor Li plating/stripping; (2) elec-
trolyte oxidation on delithiated cathode surfaces; (3) Li-dendrite 
formation; (4) poor safety. The two cathode chemistries selected in 
this work (NMC811, LCP) are only representative, chosen because 
of their advantageous properties (high capacity with strongly cata-
lysing Ni-rich surface, and unusually high voltage), and the concept 
of interphase fluorination we show in the present work should be 
universally applicable to other battery chemistries such as Na-metal. 
In fact, significant increases in Na plating/stripping and improve-
ment in oxidation stability are also observed (Supplementary Fig. 
38). Our findings provide an alternative avenue (which we believe 
is more practical) to the high salt concentration approach for the 
design of new electrolyte systems for the most aggressive cathode 
and metal anode chemistries.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0183-2.
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Methods
Materials. Li chips with a thickness of 250 µ m were purchased from MTI 
Corporation. Cathode NMC811 (LiNi0.8Mn0.1Co0.1O2) electrode laminates 
(~10.8 mg cathode material per cm2) were obtained from Argon National Lab. 
The electrode was cut into discs and dried at 80 °C under vacuum overnight. 
Dimethyl carbonate (DMC), fluoroethylene carbonate (FEC), ethylene 
carbonate (EC) and propylene carbonate (PC) were bought from Sigma-Aldrich. 
1,1,2,2-tetrafluoroethyl-2ʹ,2ʹ,2ʹ-trifluoroethyl (HFE) was purchased from SynQuest 
and dried over activated molecular sieves before use. Methyl (2,2,2-trifluoroethyl) 
carbonate (FEMC) was synthesized at the Materials Engineering Research Facility 
of Argonne National Lab and provided to Army Research Lab, where it was dried 
over activated molecular sieves before use. Cathode LiCoPO4 was synthesized 
based on the literature51. Salts LiPF6 (99.99%, BASF), NaPF6 (> 99%, Sigma-
Aldrich), lithium bis(fluorosulfonyl) imide (LiFSI, 99.9%, BASF) and sodium 
bis(fluorosulfonyl)imide (NaFSI, 99.7%, Solvionic) were used as received.

Screening of electrolytes. The development of a new electrolyte formulation 
must often balance a series of conflicting requirements that cannot be achieved 
with a single solvent and salt. At least five major properties must be taken 
into account: (1) salt solubility; (2) ion conductivity; (3) wettability to both 
separator and electrodes; (4) stability against sustained reductive or oxidative 
decompositions; (5) ability to contribute desired interphase chemistry ingredients. 
To ensure that a highly fluorinated interphase with maximum protection power 
be formed, we sought an all-fluorinated electrolyte formulation in which all 
components (solvents, salt anion) that are likely to be involved in interphase 
formation chemistry must contain at least one fluorine in its structure. Assisted 
by DFT calculations, we identified a few solvents with varying fluorination degree 
that would probably lead to highly fluorinated interphases on both anode and 
cathode, and experiments further downselected their combinations to address the 
requirements of solubility, conductivity and wettability. The eventual optimized 
formulation consisted of 1.0 M LiPF6 dissolved in a mixture of HFE, FEMC and 
FEC at a weight ratio of 2:6:2. As the most polar of all three solvents, FEC served 
as the main solvating agent, whose presence had to be 20% to ensure sufficient 
salt concentration, while FEMC and HFE both served as diluents to increase ion 
conductivity. According to the DFT calculations, the HFE component had the 
highest oxidation stability and produced the most LiF per solvent molecule during 
reduction (because of its high F density).

According to DFT calculations, the HFE component has the highest oxidation 
stability and produced the most LiF per solvent molecule during reduction; 
however, its salt solubility and conductivity are limited, requiring the presence 
of FEC and FEMC. The former has the highest dielectric constant and highest 
affinity to Li+ (Supplementary Fig. 23) of the three solvents, and is mainly 
responsible for LiPF6 dissociation (Supplementary Fig. 39). Because of its smallest 
F content, FEC•

(-H) ring opening could still induce some gas generation reaction, 
though this reaction is slow. Therefore, FEC composition should be low but 
sufficient for ionic conductivity.

Material characterization. The Li-metal morphology was characterized by 
scanning electron microscopy (Hitachi SU-70 FEG SEM). TEM images were 
obtained with a JEOL JEM 2100 LaB6 transmission electron microscope with 
an electron accelerating voltage of 200 keV. XPS data were collected using a 
high-sensitivity X-ray photoelectron spectrometer (Kratos AXIS 165, Mg Kα  
radiation). The C1s peak (284.6 eV) was utilized as the reference to calibrate 
other binding energy values. The electrodes were rinsed and dried under 
vacuum before characterizations. The contents of different species in the SEI 
and CEI layers were obtained by fitting the whole XPS spectra using CasaXPS 
software. The distribution of the constituent elements at different depths in 
the cycled Li metal was analysed using time-of-flight secondary ion mass 
spectroscopy (ToF-SIMS) attached to a Ga+ focused-ion beam (FIB)/SEM 
(Tescan GAIA3) at an accelerated voltage of 20 kV and 1 nA current. DSC 
experiments were performed with a TA Q600 differential scanning calorimeter. 
The scanning rate was 5 °C min−1. Before tests, the Li||NMC811 cells were 
charged to 4.4 V, and held for 1 h. The charged cell was then disassembled in a 
glove box. Charged NMC811 material (5 mg) was sealed with the electrolyte in a 
high-pressure DSC vessel (30 µ l).

Electrochemical measurements. All cell assembling/disassembling, and electrolyte 
preparation, were performed in an Ar-filled glove box with moisture and O2 
content below 2 ppm. Before preparing the electrolytes, the solvents were dried 
over an activated molecular sieve (4 Å). A Karl Fisher titrater (Metrohm 899 
Coulometer) was utilized to measure the water content of the electrolytes, which 
was lower than 10 ppm in all prepared electrolytes. Coin cells (2032 type) were 
used to test the electrochemical performance of the LMBs. The voltage window 
for the different electrolytes was tested using a three-electrode T-cell. Li metal 
was used as the counter and reference electrodes, and polished stainless steel was 
utilized as the working electrode. The charge/discharge properties of the cells were 
determined using an Arbin battery test station (BT2000, Arbin Instruments).  
For Li||NMC811, two activation cycles (C/4, 50 mA g−1) were conducted before 
a long-term cycle-life test at a higher charge/discharge current (C/2). For the 

Li||NMC811 battery with onefold Li excess, the onefold excess Li electrode was 
pre-deposited on the current collector. Before deposition, the current collector 
was pre-cycled (plating/stripping) for 5 cycles to remove possible oxidation 
layers. Onefold excess means that the capacity ratio of the pre-deposited Li metal 
to cathode capacity is 1. The cathode areal capacity was 2 mAh cm−2. Therefore, 
we pre-deposited Li metal on the current collector with an areal capacity of 
2 mAh cm−2. The same disc size was used for the cathode and anode. For the 2032 
coin cell, the loading of the cathode was 2 mAh cm−2. The disc area was 1.5 cm2. 
The volume of the electrolyte in the coin cell was 100 µ l. The electrolyte-soaked 
glass fibre filter was used to test the flammability of the electrolytes.

Methodology of quantum chemistry calculations. To provide insight into 
the initial reduction and oxidation reactions for the representative electrolyte 
model compounds, quantum chemistry calculations were performed. Two types 
of calculation were performed: (1) cluster calculations aimed at predicting the 
reduction and oxidation potentials of the representative electrolyte clusters and 
their initial decomposition reactions, using the Gaussian g09 rev. c package52;  
(2) solvent reactions with the charged CoPO4 cathode surface, aimed at 
understanding the first step of electrolyte oxidation at the cathode surface, utilizing 
periodic plane-wave DFT approaches with Vienna ab initio Simulation Package 
(VASP) software package.

Cluster calculations. Solvent electrochemical stability versus Li+/Li was 
predicted using quantum chemistry calculations by subtracting 1.4 V from the 
absolute oxidation and reduction potentials, as given in equations (1) and (2), 
respectively53,54:

Δ Δ Δ= + − ∕ − .+E G G G F(M) [ (M ) (M)] 1 4V (1)ox e S
0

S
0

Δ Δ Δ= − + − ∕ − .−E G G G F(M) [ (M ) (M)] 1 4V (2)red e S
0

S
0

In the equations, Δ Ge is the ionization free energy for equation (1) or electron 
affinity for equation (2) in the gas phase at room temperature (298.15 K),  
Δ GS(M), Δ GS(M−) and Δ GS(M+) are the Gibbs free energies of solvation for the M, 
M− and M+ complexes, respectively, and F is the Faraday constant55. It is believed 
that solvent variation will change the conversion factor of 1.4 V by 0.1–0.3 V, as 
previously discussed53,56.

The composite G4MP2 methodology was used for quantum chemistry 
calculations on smaller clusters. It is more reliable than DFT methods for 
the abstraction reactions, but becomes computationally prohibitive for large 
systems57,58. For larger and intermediate size clusters the M05-2×  density 
functional was adopted because it precisely predicts ionization potential, electron 
affinity59 and yields a more realistic electron–hole localization in the oxidized 
ethylene carbonate than the popular B3LYP functional60. The SMD implicit 
solvation model61 with acetone parameters and dielectric constant (ε =  20.493) 
was used to represent solvent molecules not explicitly included in quantum 
chemistry calculations.

Periodic calculations. Periodic plane-wave DFT calculations with Hubbard 
U correction were performed for the charged CoPO4 cathode with EC, FEC, 
FEMC and HFE molecules adsorbed on the cathode surface. The projector 
augmented wave (PAW) scheme and spin-polarized Perdew–Burke–Ernzerhof 
exchange-correlation functional were used to treat core electrons62–66 using 
the VASP package. An energy cutoff was set to be 400 eV. A 2 ×  1 ×  2 k-point 
sampling was adopted for the slab calculations. We followed previous work67,68 
for the + U augmented treatment of Co 3d orbitals and used a Ueff value of 
6.7 eV and J =  1.0 eV. A CoPO4 bulk crystal was optimized, then the (010) 
surface was created and optimized. The CoPO4 slab contained 96 atoms. The 
(010) surface was previously found to be the lowest energy in DFT studies of 
LiFePO4 and FePO4 (ref. 69). A low spin antiferromagnetic (AFM) ordering 
was used, in accord with previous studies68. The simulation cell dimensions 
were 10.10 Å ×  30.73 Å ×  9.394 Å that allowed two surfaces without adsorbents 
to be separated by 19 Å to ensure minimum interaction between the periodic 
images. EC, FEC, FEMC and HFE molecules were placed on the CoPO4 surface 
in multiple orientations, with some of the H atoms pointing towards surface 
O atoms following previous studies for EC on fully and partially delithiated 
cathode surfaces43,45. Only the most stable configurations are shown Fig. 6.  
In a second set of calculations, one H atom from the solvent was transferred  
to the closest surface O, and the geometry was optimized again. During 
geometry optimization, all O atoms in the top surface were allowed to relax, 
while other atoms of the CoPO4 were fixed. We set the energy convergence 
criteria to 10−5 or 10−6 eV A−1, and forces were converged below 0.01 eV Å−2 
during geometry optimization.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding authors upon 
reasonable request.
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