High-Performance All-Inorganic Solid-State Sodium—Sulfur Battery

Jie Yue,‡ Fudong Han,† Xiulin Fan,† Xiangyang Zhu,‡ Zhaohui Ma,† Jian Yang,⁎†‡ and Chunsheng Wang*†‡

†Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
‡Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China

Supporting Information

ABSTRACT: All-inorganic solid-state sodium—sulfur batteries (ASSBs) are promising technology for stationary energy storage due to their high safety, high energy, and abundant resources of both sodium and sulfur. However, current ASSB shows poor cycling and rate performances mainly due to the huge electrode/electrolyte interfacial resistance arising from the insufficient triple-phase contact among sulfur active material, ionic conductive solid electrolyte, and electronic conductive carbon. Herein, we report an innovative approach to address the interfacial problem using a Na₃PS₄—Na₂S—C (carbon) nanocomposite as the cathode for ASSBs. Highly ionic conductive Na₃PS₄ contained in the nanocomposite can function as both solid electrolyte and active material (catholyte) after mixing with electronic conductive carbon, leading to an intrinsic superior electrode/electrolyte interfacial contact because only a two-phase contact is required for the charge transfer reaction. Introducing nanosized Na₂S into the nanocomposite cathode can effectively improve the capacity. The homogeneous distribution of nanosized Na₃S₄, Na₃PS₄, and carbon in the nanocomposite cathode could ensure a high mixed (ionic and electronic) conductivity and a sufficient interfacial contact. The Na₃PS₄-nanosized Na₂S—carbon nanocomposite cathode delivered a high initial discharge capacity of 869.2 mAh g⁻¹ at 50 mA g⁻¹ with great cycling and rate capabilities at 60 °C, representing the best performance of ASSBs reported to date and therefore constituting a significant step toward high-performance ASSBs for practical applications.

KEYWORDS: nanocomposite, electrode design, all-inorganic, all-solid-state, sodium—sulfur battery

Sodium—sulfur (Na—S) batteries have been considered as a promising technology for stationary energy storage due to the intrinsically high capacities of sodium and sulfur electrodes and their abundant resources.¹−⁴ The traditional Na—S battery operates at a high temperature (>300 °C) with β-alumina as solid electrolyte and liquid sodium (T_m = 98 °C) and sulfur (T_m = 115 °C) as electrodes.²−⁴ During operation, the electrodes have to be in the molten state, meaning that only Na_S₄ species with low melting points are allowed to be formed during the sodiation (discharge) process. As a result, only one-third utilization of theoretical capacity of sulfur can be achieved in this system because the formation of Na₂S and Na₂S upon sodiation could not be realized due to the high melting point of Na₂S (T_m = 470 °C) and Na₂S (T_m = 1168 °C). In addition, the operation of the reactive, corrosive molten electrodes could induce a series of technical challenges in terms of safety, materials cost, high-temperature sealing and reliability, etc.³−⁴ In order to address these issues, low-temperature Na—S batteries using organic liquid¹³−¹⁴ or polymer electrolytes¹⁵,¹⁶ have been developed. Despite great improvement on the utilization of sulfur, the safety concerns arising from the flammable organic electrolytes,¹⁵,¹⁶ the shuttle reaction due to the dissolution of sodium polysulfides,¹⁷ and the formation of the sodium dendrite during cycling are the main obstacles toward their practical applications.¹⁸ The ultimate solution for these issues lies into the development of a low-temperature all-inorganic solid-state sodium—sulfur battery (ASSB) because the nonflammable inorganic solid electrolytes could eliminate the dissolution of sodium polysulfides and suppress the dendrite formation.¹⁹,²⁰ Despite these great promises, the performance of the ASSBs was largely limited by the huge electrode/electrolyte interfacial resistance. To date, there is only one report on the ASSB using Na₂S—P₂S₅ glass as solid electrolyte, commercialized micron-sized sulfur (mixed with solid electro-
lyte and activated carbon) as cathode, and Na−Sn alloy as anode.20 However, the cell could only cycle two times, and its rate capability is much lower than that of the conventional liquid or polymer electrolyte sodium−sulfur batteries.

The huge interfacial resistance in ASSB mainly results from the electronic and ionic insulating nature of the sulfur electrode and its discharge product. In the liquid electrolyte Na−S battery, only the electronic conductivity of the cathode should be ensured because the flowable and infiltrative liquid electrolyte and the dissolved high-order polysulfide catholyte could provide sufficient ionic conductivity.11,21−23 However, a high-performance ASSB can only be realized if sulfur active material, solid electrolyte, and carbon are homogeneously distributed in the cathode with sufficient triple-phase contact for charge transfer reaction. The high rate performance of the catholyte in the liquid electrolyte Na−S battery inspired us and another group to use lithium-conducting sulfide electrolyte as the cathodes (catholytes) in solid-state batteries.24−26 Utilization of lithium-conducting solid electrolyte as the electrode demonstrated a great advantage in improving the interfacial contact in the solid-state battery cathode because only a two-phase contact (between solid electrolyte and carbon) is required instead. However, the excellent cycling and rate performances of electrolyte/carbon catholyte were achieved with a sacrifice of energy density because of the high mass of the inactive components contained in the electrolyte. How to effectively improve the specific capacity while maintaining a high ionic/electronic conductivity of the sulfur cathode is very important for the development of high-performance ASSBs.

Herein, we report a Na3PS4−Na2S−C nanocomposite cathode for ASSB wherein Na-ion conductive Na3PS4 functions as both solid electrolyte and active material (catholyte), and nanosized Na2S is also an active material to further enhance the energy density of the battery. The uniform distribution of Na3PS4 and Na2S in a nanoscale carbon matrix ensures sufficient interfacial contact while maintaining high ionic/electronic conductivities of the cathode.19,27−29 Utilization of the pre-expanded Na2S-based active materials could allow the utilization of sodium-free anode and, more importantly, provide enough space for the volume change of the solid electrode during charge/discharge.19 The nanosized active material can also shorten the diffusion paths for both Na+ and electrons, which will further increase the utilization of the active material during charge and discharge processes.27 In addition, a nanocomposite electrode with enhanced mechanical property could also help accommodate the volume change of the electrode during charge/discharge.19 With these advantages, the Na3PS4−Na2S−C nanocomposite cathode exhibited an extremely high electrochemical performance in the all-inorganic Na−Sn−C/Na3PS4/NaPS4−Na2S−C battery.

RESULTS AND DISCUSSION

Figure 1a shows the XRD pattern of as-synthesized Na3PS4 (NPS) solid electrolyte. All the peaks can be well indexed to (110), (200), (211), (220), (310), (222), (321), (330), (420), (422), and (431) of cubic Na3PS4. The broad peak at around 18° is ascribed to the airtight sample holder for the XRD test. Figure 1b,c shows the XRD patterns of the Na3PS4−C (NPS−C) catholyte and Na3PS4−Na2S−C (NPS−nano-Na2S−C) nanocomposite cathode, which were prepared by ball-milling method. The nanosized Na2S in the NPS-nano-Na2S−C nanocomposite was fabricated by ball-milling the commercialized Na2S (Figure S1a). No impurities could be observed from the XRD patterns of the NPS−C catholyte and NPS-nano-Na2S−C nanocomposite cathode, indicating their great stability during the ball-milling process. In addition, the Na3PS4−micron-sized Na2S−C (NPS-micron-Na2S−C) composite was also prepared as a control cathode by ball-milling Na3PS4 and acetylene black with commercial micron-sized Na2S (Figure S1b). The weight ratio of Na3PS4, Na2S, and C in the NPS-nano-Na2S−C and NPS-micron-Na2S−C composites are kept the same (50:25:25).

Figure 2a shows the scanning electron microscopy (SEM) image of the as-synthesized NPS solid electrolyte. The particle size of the NPS electrolyte is around 1−3 μm. The SEM image of the NPS−C catholyte is shown in Figure S2. After ball-milling with acetylene black, the particle size of NPS was largely reduced to around 200 nm. In addition, the uniform elemental distributions of Na, P, and C (Figure S2) confirmed the homogeneous mixing of NPS with carbon. Figure 2b displays the SEM image of Na2S active material prepared by ball-milling the commercial Na2S and the particle size of the Na2S was reduced from several microns (Figure S3a) to around 200 nm. The SEM image and elemental mappings of the NPS-nano-Na2S−C nanocomposite are shown in Figure 2c. Very uniform distributions of sodium, phosphorus, and carbon in the sample demonstrate that Na2S, Na3PS4, and C are homogeneously distributed in the NPS-nano-Na2S−C nanocomposite electrode. Transmission electron microscopy (TEM) image of the NPS-nano-Na2S−C nanocomposite (Figure 2d) shows that the large particle observed in Figure 2c is actually composed of a large amount of small particles with the particle size around tens of nanometers, confirming the formation of NPS-nano-Na2S−C nanocomposites. On the other hand, the Na3PS4−micron-Na2S−C composite consists of irregular particles with particle sizes from nanometers to several microns, as shown in Figure S3b–f. The large particles (shown in Figure S3b) in the NPS-micron-Na2S−C composite have large contents of the Na but no P, which implies that these large particles are mainly micron-sized Na2S. Additionally, neither phosphorus nor carbon was uniformly coated on these particles, indicating the
Figure 2. SEM images of NPS (a) and nanosized Na$_2$S (b). (c) SEM image and elemental mappings of sodium, phosphorus, and carbon as well as (d) TEM image for the NPS-nano-Na$_2$S–C nanocomposite cathode.

Figure 3. Electrochemical performances of the NPS–C catholyte, NPS-micron-Na$_2$S–C composite, and NPS-nano-Na$_2$S–C nanocomposite cathodes in ASSB tested at 60 °C between 0.5 and 3 V. First three charge–discharge curves of NPS–C catholyte (a), NPS-micron-Na$_2$S–C composite (b), and NPS-nano-Na$_2$S–C nanocomposite (c) cathodes at 50 mA g$^{-1}$. The upper axis shows the total capacity of the electrode composite, and the lower axis shows the specific capacities based on the weight of Na$_2$S in the composite electrode. (d) Cycling performance of NPS-micron-Na$_2$S–C composite and NPS-nano-Na$_2$S–C nanocomposite cathodes at a current of 50 mA g$^{-1}$. All of the current densities were calculated based on the weight of Na$_2$S in the composite electrodes.
nonuniform distribution of micron-sized Na$_2$S, Na$_3$PS$_4$, and carbon in the NPS-micron-Na$_2$S–C composite.

The electrochemical performances of the NPS–C catholyte, NPS-micron-Na$_2$S–C composite, and NPS-nano-Na$_2$S–C nanocomposite cathodes were tested in the ASSB using cubic Na$_3$PS$_4$ as solid electrolyte and Na/Sn–C composite as the anode in a voltage range of 0.5–3.0 V at 60 °C. The thicknesses of the solid electrolyte and cathode composite are approximately 1 mm and 15 μm, respectively, as determined from the cross-section SEM image and elemental mappings (Figure S4). Note that sodium metal was not used as anode because Na$_3$PS$_4$ solid electrolyte is not electrochemically stable with sodium metal and will be reduced to Na$_2$S and Na,P after contacting with Na. The decomposition of Na$_3$PS$_4$ at the Na/Na$_3$PS$_4$ interface will lead to a huge and continuously increased interfacial resistance. Therefore, Na–Sn–C composite, which has a better interfacial stability with Na$_3$PS$_4$, was used as the anode. The C (acetylene black) additive in the Na$_3$PS$_4$–Sn composite functions as a buffer for the huge volume change of the Na–Sn anode during charge/discharge process, thus leading to a better anode/electrolyte interfacial stability during long-term charge/discharge cycles. Detailed characterizations of the Na$_3$PS$_4$ solid electrolyte (Figure S5) indicate that the activation energy of Na$_3$PS$_4$ is 0.45 eV, and the ionic conductivities are 1.09 × 10$^{-4}$ and 3.4 × 10$^{-4}$ S cm$^{-1}$ at 28 and 60 °C, respectively. Figure 3a shows the first three charge–discharge profiles of the NPS–C catholyte. A recent computational calculation on the electrochemical stability of Cl-doped Na$_3$PS$_4$ confirms that Na$_3$PS$_4$ will be converted into S cathode during the first charge above 2.4 V‡ similar to the redox reaction of Li$_3$PS$_4$. Therefore, the slope plateau above 2.0 V in the first charge process could be attributed to the oxidation of S$^{2–}$ contained in Na$_3$PS$_4$. The first discharge curve shows a large plateau at 1.6 V that can be ascribed to the reduction of S, followed by several small plateaus, which might be caused by the reduction of P contained in the Na$_3$PS$_4$ solid electrolyte. Highly reversible charge/discharge process could be observed in the following cycles, indicating that Na$_3$PS$_4$ electrolyte could also function as an electrode after mixing with electronic conductive carbon. The total capacity of the NPS–C catholyte (the weight of Na$_3$PS$_4$ in the cathode is 2.5 mg) is around 0.35 mAh. Figure 3b shows the first charge/discharge profiles of the NPS-micron-Na$_2$S–C composite cathode. Similar charge/discharge curves can be observed as the NPS–C catholyte. However, the total capacity of the NPS-micron-Na$_2$S–C composite cathode is even lower than that of the NPS–C catholyte, although microsized Na$_2$S was added. This is because Na$_2$S has very low electronic and ionic conductivities, and microsized Na$_2$S particles may actually block the transport path of both Na$^+$ and electrons in the cathode, leading to the capacity loss of Na$_3$PS$_4$. On the other hand, the NPS-nano-Na$_3$PS$_4$–C nanocomposite cathode with the addition of nanosized Na$_2$S exhibits a significantly improved electrochemical performance (Figure 3c). A much smaller voltage hysteresis with a higher reversibility can be observed during the charge/discharge process, confirming the enhanced reaction kinetics due to the homogeneous distribution of nanosized Na$_3$PS$_4$, nanosized Na$_2$S, and nanosized carbon in the NPS-nano-Na$_2$S–C nanocomposite cathode. Moreover, the total first capacity of the NPS-nano-Na$_2$S–C nanocomposite cathode was increased to over 1.1 mAh, which is three times the capacity of NPS–C catholyte. The NPS-nano-Na$_2$S–C nanocomposite cathode
could maintain much higher total capacity than the NPS−C catholyte for 50 cycles (Figure S6). In addition, the Coulombic efficiency of the NPS-nano-Na2S−C nanocomposite cathode (Figure 3c) was also significantly enhanced compared with that of the NPS−C catholyte (Figure 3a). It should be noted that the achieved capacities are even larger than the theoretical capacity of Na2S (687 mAh g\(^{-1}\)), which also confirms that the reversible decompositions of Na3PS4 contribute to the capacity of the electrode.35 Figure 3d presents the cycling performances of the NPS-micron-Na2S−C and NPS-nano-Na2S−C composite cathodes at 50 mA g\(^{-1}\). The NPS-nano-Na2S−C nanocomposite cathode exhibits a reversible capacity of 438.4 mAh g\(^{-1}\) after 50 cycles, which is much higher than that of NPS-micron-Na2S−C composite cathode (103 mAh g\(^{-1}\)). It should be noted that the electrochemical performance of the all-inorganic solid-state sodium−sulfur battery using the NPS-nano-Na2S−C composite cathode is much better than that of the polymer electrolyte sodium−sulfur batteries, which only exhibit low capacities with limited cycling performance (<10 cycles).13,14

In addition, the electrochemical performances of the NPS-nano-Na2S−C cathodes with higher contents of nanosized Na2S were also investigated. Figure S7 shows the cycling performances of the NPS-nano-Na2S−C cathodes with the weight ratio of 2:2:1 and 2:3:1. Both of these cathodes delivered a higher total capacity for the first few cycles than the NPS-nano-Na2S−C cathode with the weight ratio of 2:1:1. However, these two cathodes suffered from poor capacity stability. After 50 cycles, the total capacity of these cathodes dropped to around 0.4−0.5 mAh, which is lower than that of the cathode with a weight ratio of 2:1:1 (0.55 mAh). Moreover, the specific capacity based on the weight of Na2S also decreased for these cathodes, indicating a lower utilization of Na2S. The poor performances of the cathodes with high contents of Na2S are caused by the decrease of ionic/electronic conductivity and the increase of the volume change of the cathode composite. Therefore, NPS-nano-Na2S−C with a weight ratio of 2:1:1 was used in this work.

The rate capabilities of the NPS-micron-Na2S−C composite and NPS-nano-Na2S−C nanocomposite cathodes were also tested at 60 °C by increasing the current density from 10 to 100 mA g\(^{-1}\). As shown in Figure 4a, the specific capacity of the NPS-micron-Na2S−C composite cathode quickly decreases with the increase of the current density. The specific capacities of the NPS-micron-Na2S−C composite cathode at 10, 20, 50, and 100 mA g\(^{-1}\) are 448, 261, 182, and 85 mAh g\(^{-1}\). However, the NPS-nano-Na2S−C nanocomposite cathode could deliver a much higher capacity of 1026, 944, 724, and 559 mAh g\(^{-1}\) at 10, 20, 50, and 100 mA g\(^{-1}\) (Figure 4b), respectively. Moreover, the capacity could increase back to 1030 mAh g\(^{-1}\) when the current decreased back to 10 mA g\(^{-1}\), indicating great stability of the NPS-nano-Na2S−C nanocomposite cathode during high-rate charge/discharge processes (Figure 4c). To gain insights into the mechanism for the huge difference between the NPS-micron-Na2S−C composite and NPS-nano-Na2S−C nanocomposite cathodes, electrochemical impedance spectra (EIS) of the ASSBs using these two cathodes were measured (Figure 4d). The EIS of both cells were tested at fully discharged state after resting at open-circuit potential for 2 h. The observed semicircles in the EIS spectra represent the interfacial resistances, whereas the slope line in the low-frequency region is due to the Na\(^+\) diffusion in the cathodes. NPS-nano-Na2S−C nanocomposite cathode exhibits an interfacial resistance much lower than that of the NPS-micron-Na2S−C composite cathode. The largely decreased cathode/electrolyte interfacial resistance benefits from the homogeneous distribution of nanosized Na2S, Na3PS4, and carbon in the NPS-nano-Na2S−C nanocomposite cathode, which eventually leads to the significantly improved electrochemical performances.

In addition, the degradation mechanism of the ASSB with the NPS-nano-Na2S−C cathode was also investigated. Figure 5 shows the impedance profiles of the ASSB using NPS-nano-Na2S−C nanocomposite cathode at different cycles.
CONCLUSIONS

In summary, a Na3PS4−Na2S−C nanocomposite was proposed as an innovative cathode for all-inorganic solid-state sodium−sulfur batteries. Highly ionic conductive Na3PS4 could function as both solid electrolyte and active material after mixing with carbon, leading to an intrinsic superior interfacial contact because only a two-phase contact is required for charge transfer reaction. A 2-fold increase of the capacity could be achieved after introducing nanosized Na2S into Na3PS4−C nanocomposite cathode. The homogeneous distribution of nanosized Na3PS4, nanosized Na2S, and nanosized carbon in the Na3PS4−Na2S−C nanocomposite cathode could ensure a sufficient interfacial contact and high mixed (ionic and electronic) conductivities. The all-inorganic solid-state sodium−sulfur battery using such a nanocomposite cathode could deliver a high reversible capacity of 869.2 mAh g−1 with an excellent cycling (438.4 mAh g−1 after 50 cycles at 50 mA g−1) and rate capabilities at 60 °C in the all-inorganic solid-state sodium−sulfur battery, representing the best performance of all-solid-state sodium−sulfur batteries reported to date. The proposed electrode design could promote the practical applications of the safe, high-energy all-inorganic solid-state sodium−sulfur batteries and may be also applied to other all-solid-state energy storage systems.

METHODS

Sample Synthesis. Na3PS4 solid electrolyte was prepared via a mechanical milling method followed by an annealing process, based on a previous report. In brief, a mixture of 75 mol % of sodium sulfide (Na2S, Sigma-Aldrich) and 25 mol % of phosphorus pentasulfide (P5S3, Sigma-Aldrich) was milled in a zirconia (ZrO2) pot with the volume of 50 mL at 500 rpm for 2 h. The obtained powder was then heated at 270 °C for 1 h in Ar. The Na3PS4−Na2S−C composite cathodes were prepared by mechanical milling of Na3PS4, nanosized Na2S (or commercial micron-sized Na2S), and acetylene black (Soltex, Inc.) with the weight ratio of 50:25:25 in a stainless steel pot with volume of 50 mL at 370 rpm for 1 h. The nanosized Na2S was prepared by ball-milling the commercial micron-sized Na2S at a rotation speed of 500 rpm for 20 h. The Na3PS4−C catholyte was prepared by ball-milling Na3PS4 with acetylene black with a weight ratio of 50:25 in a stainless steel pot with volume of 50 mL at 370 rpm for 1 h. All these processes were performed under argon atmosphere.

Material Characterization. XRD patterns were recorded on a D8 Advance X-ray diffractometer (Bruker AXS, WI, USA) with Cu Kα line as a radiation source. SEM images were observed on a Hitachi SU-70 field emission scanning electron microscope. TEM images were achieved on a field emission transmission electron microscope (JEOL 2100F).

Electrochemical Measurement. The ionic conductivities of Na3PS4 solid electrolyte were measured by EIS using an ion-blocking Pt/Na3PS4/Pt cell prepared by cold pressing of 150 mg of Na3PS4 followed by Pt sputtering. The all-inorganic solid-state sodium−sulfur batteries were fabricated using the as-obtained composite as working electrode, Na3PS4 as the solid electrolyte, and a Na−Sn−C composite as the counter as well as reference electrodes. The Na−Sn−C composite was prepared according to a reported method. To assemble the cell, the Na3PS4−Na2S−C powder (5 mg) or Na3PS4−C powder (3.75 mg) composite cathodes were put on one side of the Na3PS4 solid electrolyte (120 mg) in a PTFE tank with a diameter of 10 mm, and Na−Sn−C anode powders (100 mg) were placed on the other side of the solid electrolyte membrane and then cold-pressed together under 360 MPa between two stainless steel rods, which act as the current collectors. Galvanostatic discharge−charge cycles were conducted using a battery cycler (LAND CT-2001A, China) in a voltage of 0.5−3.0 V at 60 °C. The current densities and specific capacities in this report were calculated based on the weight of Na2S. EIS were obtained by an electrochemistry workstation (Solartron 1287/1260) over a frequency range from 1 MHz to 0.1 Hz, with an AC amplitude of 20 mV.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b01445.

REFERENCES