Characterization and Performance of LiFePO₄ Thin-Film Cathodes Prepared with Radio-Frequency Magnetron-Sputter Deposition

Jian Hong, Chunsheng Wang, Nancy J. Dudney, and Michael J. Lance

LiFePO₄ films with a thickness of 1 μm were deposited on a stainless steel substrate by radio-frequency magnetron sputtering of a LiFePO₄/carbon composite target. Raman spectra revealed the presence of carbon in the film, which increased the electronic conductivity of the film relative to reports of the carbon-free material. X-ray diffraction revealed that the films were well crystallized, free of secondary phases, and may have a texture with a (011) orientation. The LiFePO₄ plus carbon film showed a good capacity and rate capability at 25° and −20°C when cycled as the cathode of a lithium battery, although the film was still inferior to the carbon-coated LiFePO₄ powder electrodes with 0.5 μm particle size.

© 2007 The Electrochemical Society. [DOI: 10.1149/1.2746804] All rights reserved.

The olivine-type LiFePO₄ phase, proposed by Padhi et al. and modified by Chiang, has been shown to be a promising material for the cathode of rechargeable lithium-ion batteries. In fact, it has been commercialized recently by A123 Systems due to its superiority in cost, safety, stability, low toxicity and high-rate performance. The rate capability of LiFePO₄ strongly depends on (i) the electronic conductivity, (ii) Li⁺ diffusion coefficient, and (iii) kinetics of phase transformation between LiFePO₄ and FePO₄. There have been considerable efforts to increase the rate performance of LiFePO₄ by doping, carbon coating, and using nanoscale particles. However, the mechanism of doping and role of carbon are still not completely understood in spite of their importance in the rate capability and cycle stability of LiFePO₄ electrodes. This is because the use of composite electrodes (consisting of active materials, organic binders, and conductive additives) often leads to difficulties in detailed analysis of their electrochemical lithium insertion/extraction behavior because the complex structure of the composite results in nonuniform potential distributions and unknown electrode surface areas.

Thin-film electrodes are useful for investigating the intrinsic properties of active materials because they do not need polymer binder and carbonaceous powder. With a good thin film, all-solid thin-film batteries can be fabricated using the technologies developed by Bates and Dudney. LiFePO₄ thin-film electrodes have been successfully fabricated by electrostatic deposition (ESD) combined with sol-gel methods and pulsed laser deposition (PLD). Although the ESD method offers a low cost setup, high deposition efficiency, and easy control of composition of the deposited film, it is difficult to synthesize a dense LiFePO₄ film using this method. For PLD LiFePO₄ thin film, the performance is very sensitive to carbon content (electronic conductivity) and film thickness (Li⁺ ion diffusion). The cycling capacity and coulombic efficiency of PLD LiFePO₄ film decreased from 100 to 40 mAh/g when the film thickness increased from 75 to 335 nm due to the limitation in the ionic and electronic conductivity of PLD LiFePO₄ film. Interestingly, LiCoO₂ thin films synthesized using radio-frequency magnetron sputter deposition (RF-MSD) show a superior electrochemical performance and faster relaxation characteristics than LiCoO₂ PLD films. This is believed to be due to large and badly oriented grains of the PLD films where the CoO₂ layers are parallel to the substrate (c-axis orientation), whereas RF-MSD films have finer grains with a preferred a-axis texture. Because RF-MSD avoided unfavorable orientation of large grains for LiCoO₂ films, and because LiFePO₄ also has a preferred conduction direction, it seems likely that RF-MSD LiFePO₄ thin films may have a much better performance than the PLD LiFePO₄ thick films. Therefore, the radio-frequency magnetron-sputtering was used to deposit LiCoO₂ and LiFePO₄ thin films. The sputter-deposited LiFePO₄ films prepared by Eftekhari showed only a poor performance compared with a powder electrode. Due to the lack of structural, carbon content, and morphology information in the Eftekhari investigation, the exact reason for the poor electrochemical performance is unclear. Recently, Chiu deposited 0.5 μm LiFePO₄ thin films on Ti-coated Si, Si, and stainless-steel substrates using RF-MSD. A high specific capacity was observed at low discharge currents, although the annealed films were less crystallized than the parent LiFePO₄ powder target and contained small amounts of impurity phases (LiFeP₂O₇, Li₃Fe₂PO₄, and Fe₂O₃).

In this paper, we successfully synthesized for the first time a 1 μm pure LiFePO₄ plus carbon thin-film electrode using the RF-MSD method. This radio-frequency sputter-deposited LiFePO₄ film exhibited a similar crystallization with LiFePO₄ powders. The electrochemical performance of RF-MSD LiFePO₄ films were linked with their crystalline orientation, carbon content, and electronic/ionic conductivity which were tested using XRD, Raman spectroscopy, and electrochemical impedance spectroscopy.

Experimental

Six LiFePO₄ films were deposited on six 304 L stainless steel (SS) plates with a 1.3 cm² surface by planar radio-frequency magnetron sputtering of LiFePO₄/C targets. Each SS substrate was polished on successively finer grades of silicon carbide paper with intermediate ultrasonic cleaning in twice-distilled water before being carefully dried. The LiFePO₄ targets, 2 in. diam and 0.125 in. thick, were prepared by isostatic pressing of a mixture of 95% LiFePO₄, Li₃Fe₂PO₄, and Fe₂O₃, and then sintering to a density of about 64% at 973 K for 2 h under a reduced Ar/5%H₂ atmosphere. The LiFePO₄ targets were sputtered using a 2 in. magnetron (Kurt Lesker) in flowing Ar (flow rate 30 standard cm³/min) at a pressure of 2.7 Pa (20 m Torr). With the radio-frequency powder density of 70 W, assuming a density of 3.6 g/cm³ for the films, the deposition was 20 Å/min as measured by a quartz-crystal monitor positioned at the substrate plane 5 cm from the target. The film thickness estimated by the product of the deposition rate and the...
deposition time was within 5 to 10% of the value measured with a Dektak stylus profilometer.22 The thicknesses of six RF-MSD LiFePO$_4$ films were 0.9–1 μm. As-deposited amorphous LiFePO$_4$ films were crystallized at 923 K for 2 h in a dilute H$_2$ gas mixture (95% Ar, 5% H$_2$). The surface morphology of the film was observed by a JEOL 840 (FEI Company, Hillsboro, Oregon) scanning electron microscope (SEM), and the composition of the film was measured by an EDAX (Mahwah, NJ) energy-dispersive X-ray analysis system (EDX). The crystallinity of the film was characterized by X-ray diffraction (XRD, Rigaku ARCS, Tokyo, Japan) using Cu Kα radiation. The Raman spectra were collected using a Dilor XY800 Raman Microprobe (JY, Inc., Edison, NJ) at ambient conditions, using an Innova 308c Ar$^+$ laser (Coherent, Inc., Santa Clara, CA) at the wavelength of 5145 Å with 5 mW output power. A 10x objective lens was used to collect Raman spectra from a ~10 μm spot on the sample surface. The ionic and electronic conductivity of RF-MSD LiFePO$_4$ films in perpendicular directions to the SS substrate was measured after coating an Ag layer on the top surface of the LiFePO$_4$ film. The impedance was measured with a potentiostatic sine wave signal with an amplitude of 5 mV using a Solartron FRA 1260 frequency response analyzer, and the ionic and electronic conductivities were obtained by fitting the impedance data with the equivalent circuit proposed by Jamnik, which included grain, grain boundary, and particle-to-particles impedances.23 The total (grain + grain boundary) impedance was used to calculate the ionic and electronic conductivities. For comparison, the ionic/electronic conductivity of the LiFePO$_4$ powder used for targets was also measured using a LiFePO$_4$ pellet. The pellet was prepared by die-pressing LiFePO$_4$ plus carbon powder (Hydro-Quebec, Canada, without carbon black and binder additions) at a pressure of 1.5 ton/cm2, and then coating them with an Ag conductor paste on both sides to form the blocking electrodes. The size of the pellets was around 1.3 cm in diameter and 0.1 cm thick with a density of 2.3 g/cm3.

Electrochemical properties of the film electrodes and powder electrodes were measured using a coin cell (2032) with a lithium foil disk as a counter electrode. The LiFePO$_4$ powder electrodes were prepared using the following procedures. An 80:10:10 mixture by weight of active material, carbon black and polyvinylidene fluoride (PVDF, Kynar, Elf-Atocihem) was added to 1-methyl-2-pyrrolidinone solvent to form a viscous paste. The paste was homogenized in an ultrasonic bath for 30 min and stirred thoroughly before use. The paste was then coated uniformly on a sheet of carbon-coated Al foil using a doctor blade. The film was then dried in a vacuum oven overnight at 120°C. The loading of active material was about 5.0 mg/cm2. All testing cells were assembled in an argon-filled glove box, which consisted of the cathode (working electrode), lithium foil as the anode, a composition of 1.0 M LiPF$_6$ in EC-DEC-DMC-EMC (1:1:1:3 by volume) (Ferro Corporation, Cleveland, Ohio) as the liquid electrolyte, and a polypropylene (PP) microporous film as the separator. Before testing the electrochemical performance, the cells were actuated through several charge/discharge cycles with a small current (0.1C, 1C = 160 mA/g) using an Arbin Corporation (College Station, TX) automatic battery cycler.

Results and Discussion

Film characterization.— EDX analysis revealed that P:Fe:O ratio in the LiFePO$_4$ thin film is within ±3% of 1:1:4, which showed a nearly stoichiometric composition. The XRD patterns of the stainless steel plate, the LiFePO$_4$ target, and an annealed film (923 K for 2 h) are shown in Fig. 1. The stainless steel plate showed three peaks at 2θ = 43.5, 44.5, 50.5°. Reflections due to the austenite phase γ are clearly identified as the (111) and (200) planes. The polishing procedures with sandpaper also generate the strain-induced martensite phase (α‘) and it is revealed through the (110) reflections as labeled in Fig. 1. Figure 1 shows that the martensite (α‘) phase becomes undetectable in the XRD of annealed LiFePO$_4$ film on a SS substrate because the strain-induced martensite (α‘) phase transformed into austenite phase γ during heat-treatment. The as-prepared thin film gave no visible diffraction peaks (not shown), which indicated that the as-deposited film is in an amorphous state. After heat-treating at 923K for 2 h in Ar/H$_2$, the film showed similar diffraction peaks to the LiFePO$_4$ target, which is a typical diffraction pattern of single-phase LiFePO$_4$ with a polycrystalline structure and is in perfect agreement with triphylite LiFePO$_4$.24 However, the intensity ratios of the film X-ray peaks were slightly different from those of the powder target. The high relative intensities of the (011) plane reflections for RF-MSD LiFePO$_4$ film indicate that the film may be textured. Because Li ions in LiFePO$_4$ are aligned along the b-axis, a preferred orientation with (011) plane parallel to the substrate can provide easier lithium transport along the b-axis. Textured LiFePO$_4$ films have been previously synthesized using the PLD method.12,13 The RF-MSD LiFePO$_4$ film with (011) texture and a fine polycrystalline structure should have performance similar to a powder electrode, but a higher rate-capacity than that of the (120) oriented PLD LiFePO$_4$ film.14 The surface morphology image of RF-MSD LiFePO$_4$ film after annealing at 650°C for 2 h is shown in Fig. 2. The film shows aggregated particles or columns giving a rough surface. A similar surface morphology image was also observed on a sputter deposited

Figure 1. XRD patterns of stainless steel substrate, LiFePO$_4$ target, and heat-treated RF-MSD LiFePO$_4$ film deposited on stainless steel substrate.

Figure 2. SEM micrographs of RF-MSD LiFePO$_4$ film after heat-treatment.
LiFePO4 film should be different from that of the LiFePO4 parent powders. Electrochemical impedances of the LiFePO4 thin film (Fig. 4) and LiFePO4 parent powders29 were measured using a blocking electrode.3 The results from the fitting showed that the ionic conductivity (5×10^{-6} S/cm) of the RF-MSD LiFePO4 was three times lower than that (1.5×10^{-5} S/cm3) of the parent LiFePO4 powders and the electronic conductivity (6×10^{-5} S/cm) of the RF-MSD LiFePO4 film was three orders of magnitude lower than that (5×10^{-3} S/cm3) of the parent LiFePO4 powders. The much lower electronic conductivity of RF-MSD LiFePO4 film comparing with LiFePO4 parent powders is mainly due to the lower carbon content, as evidenced by the higher intensity ratio of PO4/G ($G+D$) in Raman spectroscopy of the LiFePO4 film. However, the electronic conductivity of this RF-MSD LiFePO4 is still much higher than that (10^{-9} S/cm) of carbon-free PLD LiFePO4. The low ionic conductivity of RF-MSD LiFePO4 film is not understood at this time.

Electrochemical performance.—The electrochemical performances of two RF-MSD LiFePO4 films with the (0.9 and 1 μm) thick were tested. The discharge rate performances of the 1 μm thick RF-MSD LiFePO4 film and its parent LiFePO4 powder electrode are shown in Fig. 5. The flat potential profiles at 3.4 V correspond to the redox couple of Fe$^{2+}$/Fe$^{3+}$. The C-rates of the thin film were calculated by estimating the weight of LiFePO4 in the film from the film thickness and crystallographic density of 3.6 g/cm3. The 1 μm RF-MSD LiFePO4 showed a similar capacity (around 150 mAh/g) as the LiFePO4 powder electrode at a low discharge current (0.1 C), but the rate capacity of the RF-MSD film is still lower than that of the parent powder electrode. The low rate capacity of RF-MSD LiFePO4 film comparing with LiFePO4 powder is attributed to low Li-ion and electronic conductivity, low electrochemical reaction area due to small interface between LiFePO4 film and electrolyte, and long Li-ion diffusion path due to the larger electrode at the same discharge current, even when the thickness of PLD film is only one-third that of the RF-MSD film. The superior electrochemical performance of RF-MSD films over PLD films was also observed in the LiCoO2 cathode.30 The RF-MSD LiCoO2 film showed 100% electrochemical activity compared to only 6% for PLD LiCoO2 film.31 Similar to PLD LiCoO2, the carbon-free PLD LiFePO4 only exhibits 5% of the expected capacity.15

Because the LiFePO4 film has less carbon, and the film thickness (1 μm) is larger than the particle size (~0.5 μm) of carbon-coated LiFePO4 parent powders, the ionic/electronic conductivities of the LiFePO4 film should be different from that of the LiFePO4 parent powders. Electrochemical impedances of the LiFePO4 thin film (Fig. 4) and LiFePO4 parent powders were measured using a blocking electrode. The results from the fitting showed that the ionic conductivity (5×10^{-6} S/cm) of the RF-MSD LiFePO4 was three times lower than that (1.5×10^{-5} S/cm3) of the parent LiFePO4 powders and the electronic conductivity (6×10^{-5} S/cm) of the RF-MSD LiFePO4 film was three orders of magnitude lower than that (5×10^{-3} S/cm3) of the parent LiFePO4 powders. The much lower electronic conductivity of RF-MSD LiFePO4 film comparing with LiFePO4 parent powders is mainly due to the lower carbon content, as evidenced by the higher intensity ratio of PO4/G ($G+D$) in Raman spectroscopy of the LiFePO4 film. However, the electronic conductivity of this RF-MSD LiFePO4 is still much higher than that (10^{-9} S/cm) of carbon-free PLD LiFePO4. The low ionic conductivity of RF-MSD LiFePO4 film is not understood at this time.

Electrochemical performance.—The electrochemical performances of two RF-MSD LiFePO4 films with the (0.9 and 1 μm) thick were tested. The discharge rate performances of the 1 μm thick RF-MSD LiFePO4 film and its parent LiFePO4 powder electrode are shown in Fig. 5. The flat potential profiles at 3.4 V correspond to the redox couple of Fe$^{2+}$/Fe$^{3+}$. The C-rates of the thin film were calculated by estimating the weight of LiFePO4 in the film from the film thickness and crystallographic density of 3.6 g/cm3. The 1 μm RF-MSD LiFePO4 showed a similar capacity (around 150 mAh/g) as the LiFePO4 powder electrode at a low discharge current (0.1 C), but the rate capacity of the RF-MSD film is still lower than that of the parent powder electrode. The low rate capacity of RF-MSD LiFePO4 film comparing with LiFePO4 powder is attributed to low Li-ion and electronic conductivity, low electrochemical reaction area due to small interface between LiFePO4 film and electrolyte, and long Li-ion diffusion path due to the larger electrode at the same discharge current, even when the thickness of PLD film is only one-third that of the RF-MSD film. The superior electrochemical performance of RF-MSD films over PLD films was also observed in the LiCoO2 cathode. The RF-MSD LiCoO2 film showed 100% electrochemical activity compared to only 6% for PLD LiCoO2 film. Similar to PLD LiCoO2, the carbon-free PLD LiFePO4 only exhibits 5% of the expected capacity.

Because the LiFePO4 film has less carbon, and the film thickness (1 μm) is larger than the particle size (~0.5 μm) of carbon-coated LiFePO4 parent powders, the ionic/electronic conductivities of the LiFePO4 film should be different from that of the LiFePO4 parent powders. Electrochemical impedances of the LiFePO4 thin film (Fig. 4) and LiFePO4 parent powders were measured using a blocking electrode. The results from the fitting showed that the ionic conductivity (5×10^{-6} S/cm) of the RF-MSD LiFePO4 was three times lower than that (1.5×10^{-5} S/cm3) of the parent LiFePO4 powders and the electronic conductivity (6×10^{-5} S/cm) of the RF-MSD LiFePO4 film was three orders of magnitude lower than that (5×10^{-3} S/cm3) of the parent LiFePO4 powders. The much lower electronic conductivity of RF-MSD LiFePO4 film comparing with LiFePO4 parent powders is mainly due to the lower carbon content, as evidenced by the higher intensity ratio of PO4/G ($G+D$) in Raman spectroscopy of the LiFePO4 film. However, the electronic conductivity of this RF-MSD LiFePO4 is still much higher than that (10^{-9} S/cm) of carbon-free PLD LiFePO4. The low ionic conductivity of RF-MSD LiFePO4 film is not understood at this time.
current of 0.1 C and retain almost 50% of the capacity even at 2 C. This 1 μm LiFePO4 film can also provide capacity of 45 mAh/g at 0.1 C and 10 mAh/g at 1 C at −25°C. Studies of LiFePO4 films are very useful to investigate the effects of ionic/electronic conductivity, to study kinetics of phase transformation on the rate performance of LiFePO4 materials, and to make a great all-solid thin-film battery with a thin-film solid electrolyte such as Lipon.

Acknowledgment

This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC, and also by US Army Communications Electronics Command (CECOM), under contract W909MY-06-C-0040.

Tennessee Technological University assisted in meeting the publication costs of this article.

References