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KEYWORDS Abstract

AL, 0s; This work demonstrates the effect of atomic layer deposited (ALD) ALLO; on the reactivation of
Atomic layer deposi- dissolved polysulfides in Li-S batteries. A 0.5 nm thick layer of Al,O3 is conformally coated onto highly
ti_on; porous carbon cloth by ALD, and then assembled in a Li-S battery between the sulfur cathode and the
Li-S battery; anode side (separator and Li anode) to function as a reactivation component. Compared to half cells

Porous carbons;

St el with no ALD treatment, the ultrathin Al,O; coating increases the specific discharge capacity by 25%

from 907 to 1136 mA h/g at the 1st cycle, and by 114% from 358 to 766 mA h/g at the 40th cycle.
Thus the ALD-AL,0; improves the initial specific capacity and stabilizes the cycle life remarkably.
Scanning electron microscopy and energy-dispersive X-ray spectroscopy results indicate that the ALD-
AL, O3 coated carbon cloth sorbs (adsorbs/absorbs) more dissolved sulfur species from the electrolyte.
Potential mechanisms for the improved sorption properties are proposed. The combination of an
ultrathin ALD-oxide coating with highly porous carbons presents a new strategy to improve the
performance of Li-S batteries.

© 2013 Elsevier Ltd. All rights reserved.

Introduction emerging research field interested in finding novel applications
of these sulfur wastes [3]. In the area of energy storage, sulfur
has been intensely studied as a promising cathode material for
lithium ion batteries (LIBs). Sulfur is a low cost, non-toxic
material with a high theoretical specific energy density, 3-5

*Corresponding author. Tel.: +1 301 405 9303; times higher than current intercalation chemistry-based
fax: +1 301 314 8514. LIBs [4]. These properties indicate a large potential market
for sulfur as a cathode material in the near future [5]. Sulfur

Sulfur, an earth-abundant material, is one of the largest by-
products of the petroleum industry [1,2]. As such, there is an
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and lithium polysulfides (intermediates in Li-S batteries), how-
ever, are electronic insulators and high-order lithium polysul-
fides (Li,Sy, 3<x<8) readily dissolve in liquid electrolytes.
Particularly, the dissolution-associated behaviors of the inter-
mediate polysulfides reduce the amount of active sulfur
available at the cathode. Also, the dissolved polysulfides
transport through the electrolyte and dissipate energy at the
lithium anode via direct chemical reactions, which triggers the
so-called shuttle effect in Li-S batteries [6]. As a result, Li-S
batteries suffer from low practical capacity and poor cycling
stability [7]. Eliminating the sulfur dissolution problem is the
primary challenge for future applications of Li-S batteries.

A lot of strategies in the area have been done to address the
problem. Except for the passivation of lithium anodes with
LiNO5 [8-10] and alteration of electrolytes, [11-13] the majority
of efforts have been devoted to engineering cathode compo-
sites. The most common tactic is to confine sulfur within various
porous carbons, including mesoporous carbons, [14] micropor-
ous carbons[15], bimodal porous carbons,[16,17] hierarchical
porous carbons, [18] hollow carbons, [19,20] carbon nanotube
(CNT)/porous carbons, [21] and graphene/porous carbons [22].
Confinement within various conductive polymer/carbon
matrices, such as PEDOT:PSS[23] and polyaniline [24] has also
been explored. To further enhance the restriction of polysulfide
dissolution, oxide nanoparticles (Mgg ¢Nip 4O, [7] Al,05, [25]
Mgy sCup,0 [26]) and porous oxide nanoparticles (SiO,, [27]
TiO, [28]) are added as sorption reagents of polysulfides.
Another example is to restrict sulfur into polyacylonitrile
structures for cathode composites [29]. All of these technolo-
gies were developed to confine the sulfur within the cathodes.
The volume fluctuations in the discharge/charge process,
however, inevitably affect the mechanical strength and mor-
phology, [30] and thereby the validity of in-situ confinement.

Recently, the unique surface coating technique of atomic
layer deposition (ALD) has gained attention for LIB fabrication
[31]. Even on complicated 3-D nanostructures, ALD enables a
conformal coating with precise thickness control at the atomic
scale [32,33]. Most recently, the application of Al,0s; coatings
on L'iCOOZ, [34,35] Li[Lio.zoMn0.54Ni043C00.13]02, [36] and natural

+
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Figure 1

graphite electrodes [37] by ALD greatly improved LIB cycling
performance. It is suggested that the ALO; layer modifies
electrolyte-electrode interface and prevents the active
materials from dissolving.

In this work, we utilize an ALD-Al,0; coating on porous
carbon to solve the dissolution problem through a strategy of
ex-situ collection (adsorption/absorption) and reactivation of
the dissolved polysulfides in electrolyte. Ex-situ collection here
refers to recovering the lost polysulfides from the electrolyte
with a separate ALD layer, rather than confining sulfur species
in an S-loading layer in-situ. Reactivation refers to the recovery
of electrochemical activity of the collected sulfides given that
the ultrathin ALD layer (<0.5nm) is conductive. Fig. 1a
illustrates a general configuration of Li-S batteries based on
this strategy. Specifically, we employ a porous activated carbon
cloth (ACC) as a basic reactivation layer. In the literature,
nanosized ALO; particles have been shown to exhibit poly-
sulfide adsorption in sulfur cathodes [25]. To enhance the
sorption properties, a 0.5 nm thick ALD coating of ALO; is
conformally deposited on the pore surfaces of the ACC fibers
(ALLO3-ACC). The porous structure and the electrical conductiv-
ity of the ACC are expected to be maintained in the Al,05-ACC
samples, and the resulting Al,03-ACC is expected to collect and
reactivate more polysulfides than bare ACC under the same
conditions (Fig. 1b). Recently, Nazar and co-workers utilized
surface-initiated growth of thin oxide coatings directly onto
modified mesoporous carbon-sulfur structures, [38] and
Manthiram and Su inserted a CNT film interlayer to dramatically
improve Li-S battery behavior [39,40]. The focus of our work is
to understand how the combination of ultrathin ALD-Al,03 with
porous carbon improves Li-S battery performance.

Experimental section
Materials

Sulfur powder, bis(trifluoromethane)sulfonimide lithium salt
(LiTFSI), and tetraethylene glycol dimethyl ether (TEGDME)

Polysulfides

Polysulfides

(a) Schematic of the Li-S battery with a conductive, porous carbon reactivation layer inserted between the sulfur cathode

and separator. This reactivation layer functions to collect and reactivate the intermediate polysulfides (not shown) dissolved in
electrolyte. (b) Illustrated cross-sections of ACC and ALD Al,05 coated ACC (Al,05-ACC) before and after collection of polysulfides in
electrolyte. The ALD-AL,0; coated ACC fiber maintains the highly porous structure and electrical conductivity while improving
collection (adsorption/absorption) and reactivation of polysulfides.
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were all purchased from Sigma-Aldrich. Active Carbon Cloth
(ACC, Kynol™ 507-20) was provided free by Gun Ei Chemical
Industry Co., Ltd. (Gunma, Japan). From the company data
sheet, the ACC is 0.5 mm thick and has a specific surface
area of 2000 m?/g.

Infiltration of sulfur in ACC

The ACC was first punched into disks with a diameter of 1/4 in.
(average 2.5 mg per piece). The ACC disks were hung on a
platinum wire, and vacuum-sealed in a glass tube with
sulfur powder. The samples were heated to 300 °C and hold
for 6h and cooled to room temperature for 24 h [41].
Typically the initial mass ratio of sulfur to ACC disks (20
pieces) in the glass tube was 1.5. Before and after heating,
the mass of each disk was recorded with microbalance
(Sartorius ME5, Data Weighing Systems, Inc.) to calculate
the weight of infiltrated sulfur. The average sulfur loading
per disk is 3.74 mg+0.27%, corresponding to 59 wt% or
12 mg/cm? of sulfur loading amount (Table S1 in supporting
information).

Atomic layer deposition (ALD) of Al,03 on ACC

The dry ACC disks (diameter: 1/4in.) were placed into an
atomic layer deposition system (Beneq TFS 500) for Al,05
deposition. High-purity nitrogen at 150 °C was used as
carrier gas for the whole process. To preserve the high
conductivity of ACC as much as possible, only five cycles of
ALD were performed. Each cycle includes alternating flows
of trimethylaluminum (TMA, 4s, Al precursor) and water
(4 s, oxidant) separated by flows of pure nitrogen gas (4 and
10's, respectively, carrier and cleaning gas). The thin layer
of Al,O5 on ACC surfaces is estimated to be 0.5 nm according
to a control of 200 cycles, 10 nm measured with atomic
force microscopy (AFM).

Surface area and porosity tests for ACC and
Al,03-ACC

Nitrogen (N;) adsorption and desorption isotherms were
recorded with a Micromeritics ASAP 2020 Porosimeter Test
Station. Samples of ACC and ALD Al,03-ACC (0.5g each)
were used for the tests without any pre-treatment. The
specific surface area was calculated by a single point at
P/Py=0.3, and the porosity distribution was calculated with
the BJH (Barrett-Joyner-Halenda) equation.

I-V curve tests

ACC was cut into a 1 x 2 cm? rectangle and affixed to a glass
slide for |-V testing. Silver glue adhered two 0.5 cm sections
of the long side to the substrate, leaving a bare 1 x 1 cm?.
The sample was dried for 30 min at 60 °C to evaporate the
solvents from the glue and form silver electrodes. The
current-voltage (I-V) tests were performed at room tem-
perature using a TT-prober manipulated probe system
(Desert Cryogenics, LLC). The [-V properties of the Al,0;-
ACC samples were tested in the same manner. Sheet

resistances (Rs) of 90 and 170 Q/sq. were calculated for
ACC and Al,03-ACC, respectively.

Assemblies of Li-S batteries with reactivation layers
and electrochemistry tests

Two-electrode coin cells (CR2032) were assembled with
lithium foil counter electrodes and 1 M LiTFSI in TEGDME
electrolyte. The reactivation layer was inserted between
the S-loading layer and the microporous membrane separa-
tor (Celgard 3501). The half cells were assembled in an
argon-filled glovebox (oxygen content<0.1 ppm, water con-
tent<0.5 ppm). The half cells were charged and discharged
between 1.0 and 3.0V (vs. Li/Li*) at room temperature
(23-25 °C) using a BiolLogic battery tester.

SEM and EDS characterizations

Scanning electron microscope (SEM) and energy-dispersive
X-ray spectroscopy (EDS) characterizations were performed
with a Hitachi SU-70 SEM. No conductive coatings were
required to image the samples. The Al,03-ACC reactivation
layer samples removed from the Li-S cells were dip washed
with TEGDME and acetone five times to remove any residual
electrolyte. The cross-section samples were prepared by
immersing the fibers in liquid nitrogen until frozen then
fracturing them with clean tweezers.

Results and discussion

The Al,0; coating is deposited by five cycles of ALD on
an ACC disk (@ 1/4in.) at 150 °C under low pressure
(2-3 mbar). The thickness of the ALD-Al,0; coating layer is
estimated to be no more than 0.5 nm (see Experimental
section). For the sake of simplicity, the S-loading layer is
also prepared with an ACC disk substrate by heating both
sulfur powder and the disks together at 300 °C in a vacuum-
sealed glass tube. The characteristic results of the as-
prepared disks are shown in Fig. 2. Scanning electron
microscopy (SEM) images reveal that the ACC fibers are
smooth and straight with diameter of ca. 10 um (Fig. 2a).
The high magnification image in Fig. 2b highlights the highly
porous surface. This morphology is favorable for ALD and
sulfur-gas infiltration, as seen in elemental mapping of the
cross-section of the samples (Fig. 2c-h).

Cross-section samples are obtained by fracturing the
corresponding samples with clean tweezers in liquid nitro-
gen. Elemental mapping of the bare ACC (not displayed)
reveals neither aluminum nor sulfur in the fibers. In addition
to the uniformly distributed carbon (Fig. 2c,f), it is noted
that trace amounts of oxygen from residual adsorbed water
(0/C=0.02, atomic ratio) are present. For the S-loading
layer (S-ACC), it is clear that sulfur distributes uniformly
without aggregation (Fig. 2d,g). The Al,05-ACC exhibits a
well-defined annular pattern of elemental aluminum with
minimal infiltration into the fiber (a dotted circle marks the
boundary in Fig. 2h). The wall thickness of the annulet is
about 2 pm (Fig. 2h and S1 in Supporting Information), and
aluminum is uniformly distributed along the side walls of the
AlL,03-ACC fibers (Fig. S2). Accordingly, it can be inferred
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Figure 2 (a) and (b) SEM images of ACC fibers at different magnifications. (c)-(e) are SEM images and (f)-(h) are elemental maps
from energy dispersive X-ray spectroscopy (SEM/EDS). (c) and (f) are for bare ACC, (d) and (g) are for ACC after sulfur loading
(S-ACC), and (e) and (h) for ACC after ALD-AL,0; (Al,03-ACC). The dotted blue circle in (h) marks the boundary of major elemental

aluminum distribution. All the scale bars in (c-h) are 2 um.

that the Al,05 is radially distributed along the entire fiber,
consistent with the conformality of the ALD process.

The S-ACC and AL,0s-ACC are both fabricated with a
solid-gas process at low pressures; however the penetration
of sulfur is much greater than that of the Al,0s. This is a
result of differences in the individual processes. The former
is a continuous interaction of ACC with sulfur gas [42] for
6 h, followed by a 24-h cool down. The latter is a short,
periodic reaction totaling less than 2 min for five cycles.
As a result, sulfur has sufficient time to diffuse into and
deposit uniformly within the porous fibers. In contrast, the
AL,O3 precursors (water and trimethylaluminum) are only
allowed a small diffusion time, forming the observed
annular pattern.

Nitrogen adsorption and desorption isotherms are
recorded to compare the surface area and porosity for the
ACC and Al,03-ACC samples. To preserve the Al,O; coating
layer on the ACC, the samples are not treated in the usual
manner before characterization. As shown in Fig. 3a, both
samples possess a coincident type-l isotherm, indicating

microporous structures. The sample mass increase as a
result of the 5-cycle ALD Al,0; coating is negligible. The
BET (Brunauer-Emmett-Teller) surface area is 1734 m?/g for
bare ACC and 1692 mZ/g for AlLOs-ACC, a 2.4% decrease.
The value is close to that provided by the manufacturer
(2000 m?/g). A normalized porosity distribution is plotted in
the Fig. 3a inset, and the calculated average pore diameter
in ACC decreases from 2.6 to 2.4 nm with the 5-cycle ALD.
The minimal decrease of the surface area and pore size in
Al,03-ACC confirms that the ALD coating does not block the
ACC pores; maintaining the high surface area and porosity of
the ACC. Enhanced sorption is likely for Al,05-ACC consider-
ing the effect of Al,03 nanoparticles on polysulfides [25].
The Al,05-ACC disks need to be conductive to reactivate
the sorbed sulfides and function as an extra current
collector on the cathode side. Current-voltage (/-V) char-
acteristics are measured for both Al,03-ACC and bare ACC
disks. As shown in Fig. 3b, the samples exhibit reversible
ohmic curves between +0.5 and —0.5V with two different
slopes corresponding to the conductivity. The sheet
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Figure 3
AL,05 coating.

resistances of the ACC and Al,05-ACC samples are 70 Q/sq.
and 190 Q/sq., respectively. Despite the increase in the
sheet resistance, the Al,05-ACC is still conductive enough
for our application. To evaluate the collection/reactivation
ability for the Al,05-ACC experimentally, electrochemical
tests are performed with battery devices according to
Fig. 1. Coin cells are assembled using integrated an
S-loading layer (S-ACC) and a collection/reactivation layer
(ACC or Al,03-ACC) as working electrode, and a lithium (Li)
metal foil as counter electrode. Sulfur cathodes with only
the S-ACC layer are characterized as a control. The S-ACC
layers in all the three cathodes illustrated in Fig. 4 are
ensured equal sulfur loading by preparation in the same
batch (please see Fig. S3,54 and Table S1,52 for the detailed
information).

Fig. 4 depicts the voltage profiles of the first two cycles
for each battery. All three cathode configurations present
typical features of the lithium-sulfur reaction; the specific
capacities, however, are distinctly different. In Fig. 4a, the
S-ACC control cathode exhibits an initial discharge capacity
of 510 mA h/g, much less than the theoretical value. This
capacity is less than the value reported for ACC as a binder-
free cathode for Li-S batteries, [43] likely due to differences
in the ACC types (conductivity and pore size). When a bare
ACC reactivation layer is added, the initial capacity
increases to 907 mA h/g (Fig. 4b). This trend is consistent
with that reported by Manthiram and Su [39,40] using a CNT
film as an interlayer in Li-S batteries. To estimate the
capacity contribution of the ACC itself, ACC is tested as a
sulfur-free cathode at the same conditions. The results
display typical supercapacitor profiles with a discharge
capacity of 55 mAh/g vs. ACC (Fig. S5). From the average
weight ratio of ACC:S (5:3.75) in the test batteries (Fig. 4b),
the contribution from ACC is 73 mA h/g vs. S, indicating the
ACC contributes little to the capacity of the tested Li-S
batteries. A rational explanation for the capacity increase
with the ACC reactivation layer (S-ACCIACC) is that the
polysulfides dissolved in the electrolyte are adsorbed and
reactivated on the neighboring ACC, recovering the lost
capacity. Based on this hypothesis, replacing the bare ACC
with an Al,05-ACC reactivation layer (S-ACCIAL,05-ACC,
Fig. 4c) is expected to further improve the battery

(o

ALO, -ACC
190 ohm/sq

Current (mA)
o

-0.6 -0I.3 010 013 0.6
Bias Voltage (V)

(a) Nitrogen adsorption/desorption isotherm and (inset) BJH (Barrett-Joyner-Halenda) pore-size distribution plot of ACC
without (hollow squares) and with (solid circles) ALD-AL,0O5 coating.

(b) Current-voltage (I-V) profiles of ACC without and with ALD-

performance. The discharge capacity in Fig. 4c improves
to 1136 mA h/g, consistent with our prediction. We con-
ducted several batches of the tests, and all the results
showed a similar specific capacity trend and ALD-Al,0;
treated reactivation layer exhibited a notable promotion
for the cyclability. In Fig. 4a we note that the charge
capacities are smaller than the corresponding discharge
capacities. Quite a few sulfur species dissolved during the
discharge process do not return to the cathode and become
electrochemical inactive [44,45]. So the formation and
dissolution of polysulfides leads to Qcharge < Quischarge iN the
initail discharge/charge cycles. The reactivation layer
effectively re-collects and reactivates the dissolved poly-
sulfides in liquid electrolyte, resulting in more equivalent
charge and discharge capacities (Fig. 4b,c).

The batteries are cycled at room temperature, and
discharge capacity vs. cycle number is plotted in Fig. 5.
As anticipated, the capacity of the S-ACC cathode without
the reactivation layer drops rapidly to 220 mA h/g after 10
cycles. The use of bare ACC as a reactivation layer increases
the initial capacity, but a capacity of only 358 mA h/g (40%
of the initial capacity) is retained after 40 cycles.
In contrast, the ALD-Al,03; coating improves both the cycling
stability and capacity, and the capacity after 40 cycles is
766 mAh/g, 70% of the initial capacity. Comparing to the
bare ACC reactivation layer, the presence of a 0.5 nm Al,0;
coating increases the specific discharge capacity by 25% at
the 1st cycle, and by 114% at the 40th cycle. We intention-
ally set a low current density of 40 mA/g to increase
polysulfide dissolution; however similar cycling behavior is
observed at higher current densities. The gradual capacity
fading of the batteries with the Al,05-ACC reactivation layer
may be due to the low fiber weave density of the ACC.
Bundles of ACC fibers are separated by several hundred
micrometers (Fig. S6), allowing a considerable amount of
polysulfides to diffuse through the gaps without interacting
with the reactivation layer. We predict that using a dense
porous carbon film, e.g. carbonized electrospun fabric with
an ALD-AL,0; coating (Fig. S7) will improve reactivation
further.

The cycling performance implies that the Al,03-ACC
reactivation layer captures more polysulfides than the bare
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Figure 4 Comparison of the galvanostatic discharge/charge profiles of the first (black) and second (red) cycle of the Li-S batteries
without a reactivation layer (a), with an ACC reactivation layer (b), and an Al,03-ACC reactivation layer (c). The drawings next to

the figures illustrate the corresponding cathode configurations.

ACC reactivation layer. To confirm this we examine EDS
element maps of both reactivation layers immediately after
cycling to fully charged states. The Li-S cells are disas-
sembled and the layers washed five times with the solvent
TEGDME and then acetone to remove any residual electro-
lyte. The cleaned reactivation layers are found to maintain
their shapes, flexibility, and strength. Fig. 6a-c is the SEM
micrographs for aluminum and sulfur distributions on the
cross-section of a representative Al,03-ACC fiber. Fig. 6b
reveals that the aluminum distribution does not change
during cycling, indicating the stable coating of ALD-Al,03 on
ACC. Most importantly, Fig. 6c displays that sulfur forms a
distinguishable annulet with a 2 pm wall thickness (the
boundary is marked with a dotted circle), coincident with
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Figure 5 Discharge specific capacity vs. cycle number for Li-S
batteries with cathode configurations as shown in Figure 4a,
b and c.
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Al,0;-ACC
Reactivation layer

ACC
Reactivation layer

Fig. 6 SEM/EDS elemental mapping for Al;03-ACC (a-c) and bare ACC (d-f) reactivation layers removed from Li-S batteries after
cycling almost same time to fully changed states. (b,c) and (e,f) are elemental maps of Al, S, and C, S for the corresponding
samples. The dotted blue circles in (b,c) mark the boundaries of the elemental Al and S annulet patterns. The brightness of the EDS
patterns indicates the elemental intensities in the same image, but does not indicate the intensities in different images. All the

scale bars are 2 pm.

the Al,05 distribution in the fiber. The low density of sulfur
interspersed in the fiber center is a result of sulfur diffusion.
The annular Al,05 region sorbs more sulfur species than the
carbon center, directly confirming the stronger interaction
of polysulfides with Al,O3 than with carbon.

Fig. 6d-f is element maps of the bare ACC reactivation
layer. The sulfur distributes uniformly throughout the
whole cross-section of the ACC carbon fiber. Comparison
of the EDS data indicates that the Al,05-ACC layer has a
higher atomic ratio of sulfur to carbon (S/C=0.09) than
the bare ACC layer (S/C=0.03), verifying that Al,05-ACC
layer effectively captures more polysulfides than
bare ACC.

The coincident distribution of sulfur and aluminum in
the AL,03-ACC reactivation layers proves that the 5-cycle
ALD process does not close the ACC pores and significantly
retards polysulfide diffusion. Fig. 6f illustrates that the
polysulfides are able to diffuse throughout the entire fiber
during the cycling period. Hence, the sulfur-collection
pattern in the Al,03-ACC reactivation layer forms due to
the interaction of sulfides with Al,03, rather than insuffi-
cient diffusion time. The exact interaction between
polysulfides and Al,03 has not been determined; a poten-
tial mechanism involves chemisorption of the polysulfide
species. Cyano-groups in PAN (polyacylonitrile) were
recently suggested to attract polysulfides through the
interaction with Li* [46]. It is reasonable that the lone
pair electrons of oxygen groups in Al,03 coordinate with
lithium cations, and electrostatically attract polysulfide
anions during the discharge/charge process. Another
possible mechanism for the enhanced sorption in our
system relates to the pore size. The average pore size

of our Al,05-ACC layer is 2.4 nm. This is closer to the
length of typical polysulfide chains (<2 nm) [40] than
bare ACC (2.6 nm), more favorable for sorption to poly-
sulfides within the pores. In addition, the hydrophilicity
and polarity of the ALD layer increases the wettability
with respect to the liquid electrolyte, improving the
electrochemical properties. Any of these properties of
the ALD coating could facilitate the observed improve-
ment of Li-S battery performance.

Conclusion

We have shown the viability of ultrathin ALD-Al,0; for
enhancing the collection (adsorption/absorption) and reac-
tivation of dissolved polysulfides on ACC, improving the
initial capacity and stabilizing the cycle life remarkably for
Li-S batteries. We demonstrate this effect with a single ACC
layer; other porous carbon films are possible substrates for
the ALD-enhanced reactivation. Ultrathin ALD coatings
maintain the high surface area of highly porous structures
as well as the electrical conductivity of substrate. At the
same time the ALD-oxide endows the surfaces with facili-
tated sorption of polysulfides due to the introduced chemi-
sorption and decreased pore sizes. In addition, ALD coatings
have several advantages for electrode engineering including
conformal deposition, excellent stability, improved wett-
ability, and minimal mass gain. To our knowledge, this is the
first application of ALD for Li-S battery improvement, and it
is expected to open a new direction for sulfur battery
research.
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